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Emerging shared mobility systems are gaining popularity due to their significant economic
and environmental benefits. In this paper, we present a network-based approach for pre-
dicting travel demand between stations (e.g., whether two stations have sufficient trips to
form a strong connection) in shared mobility systems to support system design decisions.
In particular, we answer the research question of whether local network information
(e.g., the network neighboring station’s features of a station and its surrounding points
of interest (POI), such as banks, schools, etc.) would influence the formation of a strong
connection or not. If so, to what extent do such factors play a role? To answer this question,
we propose using graph neural networks (GNNs), in which the concept of network embed-
ding can capture and quantify the effect of local network structures. We compare the results
with a regular artificial neural network (ANN) model that is agnostic to neighborhood infor-
mation. This study is demonstrated using a real-world bike sharing system, the Divvy Bike in
Chicago. We observe that the GNN prediction gains up to 8% higher performance than the
ANN model. Our findings show that local network information is vital in the structure of a
sharing mobility network, and the results generalize even when the network structure and
density change significantly. With the GNN model, we show how it supports two crucial
design decisions in bike sharing systems, i.e., where new stations should be added and
how much capacity a station should have. [DOI: 10.1115/1.4062666]

Keywords: shared mobility systems, socio-technical systems, complex networks, artificial
neural network, graph neural network

1 Background and Introduction
The shared mobility system is a typical complex socio-technical

system in that its functionality and complexity are closely related to
human and social behaviors [1]. This emerging system has experi-
enced rapid growth in the last decade due to its sustainable and envi-
ronmentally friendly characteristics. Another major reason for the
shared mobility system’s popularity is its importance in last-mile
transportation, making it appealing in congested urban areas. The
growth of shared mobility systems opens up new opportunities
for new modes of transportation but also poses challenges to the
design and operation of such human-centered systems. For
example, a common problem suffered by shared mobility systems
is the rebalancing issue, i.e., bikes are delivered by users between
stations, resulting in some stations being overcrowded and some
being vacant. This issue is mainly due to imbalanced demands for
points of interest (POI) at different locations [2] or suboptimal
system design decisions, for example, imbalanced dock distribution
(the distinct dock differences between stations within identified
vital local service systems) in bike sharing systems (BSS) [3].

Effective design methodologies and solutions to these problems
are essential for the success of system operation, a high customer
retention rate, and long-term quality service.
To this end, in the existing literature, attempts have been made

to develop vehicle-based and user-oriented rebalancing strategies
[4–7]. Some other studies focus on system infrastructure design
decisions, e.g., station location and capacity planning [3,8,9]. For
example, in our previous study, a network-based design approach
was proposed to balance the capacity difference between stations
in the local service systems of a BSS network for enhanced robust-
ness against seasonal effects [3]. However, one challenge associated
with these studies is that the design decisions found are difficult to
validate. To address this challenge, it is necessary to have a dedi-
cated and highly performed predictive model that can forecast
travel demand in response to design decisions and strategies
before they are actually implemented in practice, as shown in
Fig. 1. Additionally, a powerful predictive model will be beneficial
to system design in terms of cost control, robust operation, and
maintenance.
The rest of the paper is organized as follows. In Sec. 2, we intro-

duce the reference framework for existing predictive models of
shared mobility systems and especially the graph neural network
(GNN) models. Then, Sec. 3 illustrates the problem formulation,
as well as a summary of our contributions. The proposed
complex network-based approach and the associated methods for
model analysis and evaluation are presented in Sec. 4. Section 5
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takes the Divvy Bike in Chicago as a case study to demonstrate our
approach. In Sec. 6, we discuss the limitations of the proposed
model and clarify its utility constraints on the support of systems
design. Finally, the paper is concluded in Sec. 7 with future work
and closing thoughts.

2 Frame of Reference
2.1 Predictive Models of Shared Mobility Systems. The

research on shared mobility prediction did not gain attention until
the worldwide promotion of the third-generation shared mobility
program in 2006 [10,11]. In the early studies, researchers often
employ simple statistic models to study the system dynamics and
predict the available bikes at a station or the demand for usage
[12–15]. For example, Froehlich et al. [13] proposed four predictive
models, namely last value, historic mean, historic trend, and Baye-
sian network (BN), to forecast the availability of bikes at each
station within a time frame ranging from 10 to 120min. The param-
eters considered for all these models include the current time point,
the current known number of bicycles, and the prediction window.
In a separate study, Borgnat et al. [12] adopted a linear regression
model to predict the number of bikes rented in an hour, incorporat-
ing weather, holiday effects, the number of subscribers, and the total
number of bikes as input factors. These predictive models represent
initial explorations of shared mobility prediction, but their scope is
limited to capturing simple interactions, such as linear relationships
between impact factors and user demand.

a Classical Machine Learning Models. The recent advance-
ment in machine learning (ML) literature has greatly promoted
research on various predictive models of user travel patterns and
helped to gain better insights into shared mobility. Compared to
early studies, more factors influencing user travel behaviors are
explored, including peak hours, surrounding POI, spatial dependen-
cies between serving stations, etc. [16–19]. The ML models can be
put into two categories: classical ML models and deep neural
network (DNN) models [16]. Some popular classical ML models
include different variants of the linear regression model [20–22],
Bayesian models [23], and the Markov queuing model [24].
These models are advantageous over simple statistical models in
that they improve interpretability. For example, in Ref. [22], the
authors develop a log-linear mixed model to understand how
factors, such as bicycle infrastructure attributes and land use charac-
teristics, influence bicycle arrival and departure rates. The estima-
tion results show that the numbers of arrivals and departures in a
sub-city district positively correlate with the station density.

However, the downside of classical models is that they are
usually built with many assumptions, resulting in low model valid-
ity and predictive performance.

b Deep Neural Network Models. DNN models typically out-
perform classical ML models in terms of predictive power but at
the expense of losing interpretability. As summarized in a recent
survey study [25], those advanced DNN models for shared mobility
systems are variants of four classical DNN models, feedforward
neural network (FNN),2 recurrent neural network (RNN), convolu-
tional neural network (CNN), and GNN. FNN is the simplest neural
network where information flows in a forward direction, starting
from the input nodes, passing through any hidden nodes, and
ending at the output nodes, without any cycles or loops [26]. A rep-
resentative study suggested a variation of FNN, known as the
“pseudo-double hidden layer FNN,” to forecast the demand for
bike rentals [27]. RNN with nodes connected by feedback loops,
enabling neural networks to exhibit temporal dynamic behavior,
is frequently used to capture the long-term temporal dependency
of shared mobility systems [28–30]. In the work of Ref. [30], a
dual attention-based RNN is proposed to predict the demand for
bike sharing over the next 10min by taking the usage data in the
past 20, 30, 40, and 60min as input, respectively. This model
uses random walks to preserve relationships between bike stations
in time-series data preprocessing, increasing adaptability to local
changes. It also incorporates an attention mechanism to extract
spatial and temporal features. The inherent ability of CNN to
learn from multiple inputs and extract features provides an efficient
way to handle the temporal dynamics and spatial dependencies of a
shared mobility system and herein predicts demand patterns in a
shared mobility system [31,32]. For example, in Ref. [31], the
authors adopt CNN to predict daily bicycle pickups at both city
and station levels, and improved predictive performance is achieved
at both levels compared to the simple artificial neural network
(ANN) and autoregressive integrated moving average time-series
models.
While FNN, RNN, and CNN have proven to be effective in

solving certain problems in shared mobility systems, such as
demand prediction [28,30] and spatial interaction analysis
between stations [17,18], they have limitations. For example,
FNN lacks the ability to capture complex interactions between sta-
tions; RNN is prone to gradient vanishing and gradient explosion
problems; and CNN has limited ability to process graph-structured
data [25]. To address these limitations, GNN, which is specifically

Fig. 1 Illustration of the network-based design decision support framework for the sharedmobility system. In addition to sup-
porting design decision validation, the highlighted predictive model in the dashed box can also (1) be a surrogate model of a
real-world experiment, (2) provide instant feedback for future design decision adjustment, and (3) assist in decision-making on
system operation.

2In this study, we also refer to it as the simple/regular ANN in short.
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designed to handle graph-structured data, was evident to be the
solution.

2.2 Graph Neural Network Model. Graphs are an important
representation for complex systems [33–35] in that they not only
model the interconnection and interrelation between system ele-
ments but also the leverage of complex network theories [36].
Graphs are non-Euclidean data, as opposed to other regular Euclid-
ean data, such as images (2D grids) and texts (1D sequences). Its
high dimensionality hinders the direct usage of some advanced
neural network models such as CNN. To fill this gap, a GNN
[37] was proposed in 2008, and due to its outstanding performance,
GNN has been widely used across domains since then [38,39]. For
example, Ahmed et al. [40] developed a GNN-based method to
predict the competition relationships between different car models
in a vehicle co-consideration network. The model provided great
insight into the key engineering attributes that promote the forma-
tion of car competitions.
In transportation research, some representative studies include

using GNN to forecast spatially heterogeneous traffic speed
within the road network [41] and a novel Conv-GCN model com-
bining a graph convolutional network (GCN) and a three-
dimensional CNN for the prediction of short-term subway passen-
ger flow [42]. Recently, a large number of GNN models have
also been introduced for the study of shared mobility systems
[17,18,43]. For example, in Ref. [17], the authors present a graph
convolutional neural network-based approach, which incorporates
long short-term memory (LSTM) layers, to predict hourly
demand in a large-scale bike sharing network. Meanwhile, they
demonstrate the effectiveness of the proposed model considering
both spatial and temporal dependencies between bike sharing
stations.
The fundamental idea of GNN is that each node within a network

is defined by its features and network neighbors, so each node in a
network can be represented by these two pieces of information.
Such a representation is also referred to as node embedding. Fol-
lowing the acquisition of node representation, various downstream
tasks, such as node/link/graph classification, node/link/graph
regression, node clustering, link prediction, and graph match, can
be accomplished [44]. Recently, many variants of GNN have
been developed, each based on a different node embedding strategy
[45–47]. For example, the well-known DeepWalk algorithm [46]
generates node embedding in two steps, the first of which is to
perform random walks on nodes in a graph to obtain node
sequences. The skip-gram is then used in the second step to learn
the node embeddings from the generated sequences [48].
GraphSAGE is another remarkable variant of GNN in that it is a

general inductive framework. Unlike other frameworks that train
individual embeddings for each node, GraphSAGE learns an
embedding generating function by sampling and aggregating fea-
tures from a node’s neighborhood [45]. This inductive framework
provides a solution for graphs with varying node counts. Even if
an unseen node is introduced into the graph, its representation can
still be properly generated by feeding its neighborhood feature
into the trained embedding generating function. This is also the
primary reason for us to choose GraphSAGE in this study to
learn node embeddings of shared mobility networks. For
example, in a BSS, the system expands or compresses its scale by
introducing new stations or discarding old stations. A more detailed
description of the algorithm can be found in Ref. [45].
After reviewing the current literature, we found that the existing

GNN models only predict the rental and return demands at the
station level, but do not inform where the return comes from and
the rental goes [19,27,29]. Furthermore, most studies are keen on
predicting short-term travel demand (e.g., the number of bikes
used in an hour) [17,32], which are typically more advantageous
for the analysis of dynamic system operation but do not predict
the number of trips occurring from one station to another over a
longer period, such as one month or one year. From the engineering

system design point of view, the prediction of long-term relation-
ships between stations is important because it provides a summative
view of a system’s connections, enabling the detection of potential
design defects, without being affected by the fluctuations in rental
and return demand. For instance, a station may experience fluctua-
tions in its number of in- and out-connections in different short
periods, resulting in potential rental issues (no bikes to rent) in
the morning and return issues (no dock to return) in the afternoon.
These short-term demand issues can be addressed through dynamic
rebalancing strategies. However, if a station or the entire system has
imbalanced in- and out-connections during a longer period of time,
it is necessary to address this issue through optimal design decisions
to change the current system architecture or structure, such as
expanding existing stations by adding more docks or constructing
new stations to ease the load at popular sites.
In our previous work [3,49], we have demonstrated that a

network is an effective representation and tool for studying
shared mobility systems and have identified important local
network structural patterns (called network motifs) that contribute
to the formation of real-world BSS networks. The advantages of
taking a network perspective in the research of shared mobility
systems are twofold. First, as illustrated in Fig. 1, it transforms
the mobility system demand prediction to the network link predic-
tion, thus providing a means to assess the relations between the
origin and destination of each trip. Design decisions can also be
easily incorporated into the network model, such as introducing
the newly built stations as new nodes and enlarging the node size
to reflect a station’s expansion. Second, network models can
provide means to investigate the interactions between local
system structures (e.g., travel patterns among three stations in a
local area) and global system performance (e.g., network robust-
ness), which is essential to answer the following research question:
whether and to what extent local network information (e.g., struc-
ture and node features) plays a role in the formation of shared
mobility networks.
Therefore, in this study, our research objective is to develop a

complex network-based predictive model considering neighbor-
hood information to predict travel demand between stations in
shared mobility systems in the long term to support systems
design decisions. Travel demand refers to the existence of at least
a specific number of trips that occur from one station to another
over a period of time.

3 Problem Formulation
This study focuses only on docked shared mobility systems, i.e.,

the system includes fixed service stations with limited docking
capacity. Our goal is to develop a predictive model and test its appli-
cability to aid in design decision validation, such as whether
expanding some popular stations can meet the rising travel
demands. The essence of the predictive model is to predict the exis-
tence of a connection (with a determined number of trips to define
the strength of the connection) between any two stations in the next
year based on the previous year’s trip data. Regarding the format of
the trip data, to avoid seasonal effects, we split the yearly trip data
into 12 months. Therefore, the problem is changed to predict the
existence of the travel demand from one station to another in
month i (i= 1, …, 12) of next year with the trip data of month i
in the previous year.
As shown in Fig. 1, a network is used to model travel demand

within a month in a BSS, where nodes represent the stations, and
node attributes indicate station information, such as geographic
coordinates, capacity, and the number of surrounding POIs. Since
we are also interested in the influence of the link strength on the pre-
diction accuracy, we define a series of link cutoffs where only if a
link with the number of trips exceeds the defined cutoffs will be
kept in the network. Therefore, the network under investigation is
a directed unweighted network. We chose not to study a weighted
network because a shared mobility system involves many
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uncertainties associated with social activities, resulting in the chal-
lenge for a predictive model to directly predict its link weight (i.e.,
how many trips would occur from one station to another) with
meaningful accuracy. Thus, we arrived at forecasting the link
weight in two stages, first predicting the link’s existence and then
forecasting the weight thereafter. Furthermore, a high-performance
unweighted link prediction model is preferred to serve as a substi-
tute model for crucial downstream analyses, such as the analysis
of connections across the entire shared mobility system, compared
to a low-performance weighted network model. With this network
setup, the original prediction problem is transferred to a directed
binary link prediction problem. This is a major difference
between this study and existing work, where links are often undi-
rected. Directed network data can cause more severe imbalanced
data issues (e.g., a significantly large number of negative cases
versus a small number of positive cases), which poses significant
challenges for machine learning algorithms to improve prediction
accuracy.
In this paper, we adopt the GNN model [40,44] based on Graph-

SAGE for its ability to capture and quantify the effect of local
network structures through network embedding—node representa-
tion by sampling and aggregating features from its network neigh-
borhood [45]. More details of GNN are given in Sec. 2.2. The
contributions of this study can be summarized as follows:

(1) We proposed a complex network-based approach based on
GNN to predict travel demand between stations in shared
mobility systems. By comparing to regular ANN models,
we showed that when two-hop neighbors’ information of a
station is included, the model’s prediction performance is
8% higher than that without neighbors’ information.

(2) We tested the performance of the proposed predictive model
when the link strength increases from weak to strong. The
results show that the proposed predictive model with
network neighborhood information always outperforms the
ANN model without neighborhood information, regardless
of network density and typology. Moreover, we discover
that as the network becomes sparser, the predictive perfor-
mance (i.e., the F1-score and the precision-recall (PR) area
under curve (AUC)) of both models decreases
logarithmically.

(3) The proposed approach creatively connects design decisions
in shared mobility systems (e.g., where to add a station) with
the link prediction problem in networks, thus providing a tool
for system designers to test and experiment with their design
strategies. This is particularly important for complex systems
research because the verification and validation of the design
of such systems have always been a significant challenge.

We published our preliminary results in the Proceedings of the 2022
International Design Engineering Technical Conferences & Com-
puters and Information in Engineering Conference [50]. In this
paper, we made significant improvements on top of our prior
study, and the main distinctions are (1) this paper updates the
model training process by employing Bayesian optimization for
hyperparameter tuning and K-fold cross-validation, resulting in
more reliable prediction results; (2) we deleted the approximation
methods for GNN-based prediction. In the current work, we
explore the model performance when link strengths are varied,
which provides more insights into the generalizability of the pro-
posed approach; (3) the content of Sec. 5.4 is newly added to
show how the proposed predictive model can be utilized to
support system design decisions.

4 Methodology
An overview of the complex network-based approach for predict-

ing travel demand for shared mobility systems is shown in Fig. 2. In
this approach, we start by modeling a shared mobility system as a
complex network using historical data, i.e., period one data, includ-
ing station attributes and trip data. After obtaining the network

model, we utilize period one data to train predictive models, includ-
ing the ANNmodel in Sec. 4.2 and the GraphSAGE-based model in
Sec. 4.3. The trained model is then employed to predict the network
links in period two based on the updated nodal attributes. To eval-
uate the predictive performance of the models, the predicted links
are compared with the actual ones, and the metrics quantifying
the prediction accuracy are introduced in Sec. 4.4.

4.1 Node Attributes. In this study, the node represents the
bike sharing station and the node attributes indicate the station fea-
tures. The node attributes considered here include the geographic
coordinates of the station, the number of docks, and the POIs sur-
rounding the stations. Geographic coordinates can be used to calcu-
late the distance between two stations, and the number of docks at a
station determines the maximum number of bikes that users can rent
from or return to that station. Current research indicates that there
are evident travel patterns between certain functional zones of the
city due to user-specific travel purposes [18,19]. In the study [18],
for example, He and Shin divided POI into five major categories,
including residential, cultural, recreational, commercial, and gov-
ernmental. They found that travel behavior in BSS has a stronger
correlation between stations in recreational and residential areas
than between stations in recreational and commercial areas.
In this study, POI data are collected by Overpass turbo [51]

which includes the name of each POI and its geographic coordi-
nates. We first classify POIs into seven categories, including finan-
cial, education, recreational & tourism, residential, sustenance,
healthcare, and transportation. The details of these categories are
given in Ref. [50]. Then, we draw a circle of radius R with the
target station in the center of the circle. Finally, we count the
number of POIs in each category within the circle and treat the com-
bination of seven counts as an attribute vector of the target station.

Fig. 2 Complex network-based prediction framework for
shared mobility systems design support with neural network
(period one: month i in year Y, period two: month i in year
Y+1, i=1, …, 12)
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Regarding the value of the radius, R, in Ref. [52], the authors calcu-
lated the cumulative percentage distribution of walking trips by dis-
tance based on data from the 2009 U.S. National Household Travel
Survey. We learned from the distribution that 1.5 miles are the
walking distance upper bound of 90% of walking trips. Therefore,
POIs within 1.5 miles of a station provide the best representation of
the station’s surroundings. Taking Divvy Bike station 368 (Ashland
Ave & Archer Ave) in Chicago as an example, its POI attribute
vector in 2016 is [2, 30, 0, 2, 4, 12, 12], indicating that there are
two banks, 30 education institutions, two healthcare institutions,
four apartments, 12 restaurants, and 12 public transportation stops
within a radius of 1.5 miles.

4.2 Baseline: Artificial Neural Network-Based Link
Prediction Model. In this study, we take ANN as the baseline
model. As shown in Fig. 3, the architecture of a simple ANN
model consists of an input layer, one hidden layer, and an output
layer. Training a model starts by formulating link features. In a
shared mobility network, the link features are determined by the
two connecting nodes. Accordingly, we use the concatenation of
the features of the start and end nodes with size N to represent
the features of the directed link with size 2N. To improve training
stability, max–min normalization is adopted to transform different
features into a similar scale. Then, the normalized features are con-
nected to the input neurons in a one-to-one manner. The hidden
layer embedded between the input and output layers is fully con-
nected to these two layers and is the same size as the input layer.
Rectified linear unit (ReLU) is used as the activation function for
each neuron in the hidden layer. The activation function of the
output neuron is a sigmoid function to determine whether there is
a link from one node to another or not. This is a supervised learning
model that learns how to map the input to the output, i.e., the link
features to the link label. The stochastic gradient descent (SGD)

algorithm is used throughout the training process to minimize
binary cross-entropy loss. After obtaining the trained model, the
updated link features for the following year are fed into the
model to predict its network topology.

4.3 The Graph Neural Network-Based Link Prediction
Model

4.3.1 Model Architecture. As illustrated in Fig. 4, a Graph-
SAGE link prediction model comprises two major parts: node
embedding and link prediction. The node embedding is to learn a
representation for each node in a vector of size M. Given a
central node and its two-hop neighborhood, we first randomly
sample its direct in- and out-neighbors at the first hop. Then, the
same procedure is repeated to the sampled hop-1 neighbors to get
their hop-1 in- and out-neighbors, i.e., hop-2 neighbors of the
central node. After that, the node features of hop-2 neighbors are
normalized by max–min normalization and used as the representa-
tions of hop-1 neighbors. Lastly, the node embedding of the central
node can be obtained by tracing from hop-2 neighbors and aggre-
gating their embeddings to hop-1 nodes and then to the central
nodes inversely. The aggregator used in this study is the mean
aggregator, where the node embeddings are computed by averaging
neighboring node features [45].
Similarly to the ANN model, the learned node embeddings of the

start node and end node are concatenated to represent the link
embedding with size 2M. Because the data have already been nor-
malized during embedding, the link embedding is connected
directly to the input layer, which is followed by one hidden layer
and one output layer. The size of the input and hidden layers is
the same as that of the link embedding. Other settings are identical
to the ANN model for a fair comparison. In contrast to the ANN
model that uses node features as input, node embedding learns
information about a node’s neighbors in addition to its own features
in the network.

4.3.2 Model Training and Evaluation. During the training
process, two types of data are fed into the model. One is the
network data including node features and network adjacency
matrix. The other one is the labels of all candidate links in the
network, where existing links are labeled as class 1 and non-existing
ones as class 0. The network data for GraphSAGE is to learn node
embeddings, while the label data are for the learning task in link
classification. This entire procedure is an end-to-end training to
minimize the binary cross-entropy loss function by SGD [40].
When using testing data from the next year to evaluate the trained

model’s predictive performance, our input consists of the network
data, including the updated node list and node features as well as
the approximate network adjacency matrix. This approximate adja-
cency matrix is critical to have a correct link prediction by better
estimating the embedding of a node in the future year.

Fig. 3 Architecture of the ANN model for link prediction

Fig. 4 Architecture of the GraphSAGE model for link prediction
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4.3.3 Methods for Adjacency Matrix Approximation. Graph-
SAGE assumes that if an embedding generating function of one
type of network is learned, it can be used to generate node embed-
ding by the same type of network. The assumption is that the train-
ing and testing networks should be of the same domain and have
similar characteristics. It should be noted that since the new
nodes (without any neighborhood information) do not have neigh-
bors, GraphSAGE cannot use the adjacency information to make
predictions for these nodes. In this study, since the shared mobility
networks for training and testing are of the same month but in dif-
ferent years, they share similar characteristics. However, the chal-
lenge is that the test network for a future year is unknown. To
obtain the embedding of the testing nodes, an approximate adja-
cency matrix must be obtained to estimate their neighbors.
According to the study [53], there are several approaches to

approximating the adjacency matrix, including directly using the
training network or building a separate machine learning model
for such an approximation. In our previous work [50], we tested
three methods.

(1) The first method uses the adjacency matrix of the period two
network obtained from the ANN model as input for the node
embedding generation.

(2) The second method employs a modified period one mobility
network. In this method, for those stations retained from
period one work, their neighbors are copied directly into
the period two adjacency matrix. For the stations removed
from period one network, thus do not present in period two
network, they are ignored. For those stations newly intro-
duced in the period two network, they are kept independent
and no neighborhood information is included in the
embedding.

(3) Finally, we use the real period two network to learn the node
embedding and take its prediction performance as the ground
truth to compare with the other two approximation methods.

Based on the comparison results, we found that adopting the
modified period one mobility network to learn the node embedding
of period two can generate the best prediction (the area under the
precision-recall curve of the second method is much closer to
the ground truth and exhibits 6–10% improvements compared to
the first method). The adjacency matrix approximation by modify-
ing the period one network is thereby followed in this study.

4.4 Link Prediction Evaluation. Since link prediction in this
study can be considered equivalent to binary classification, common
metrics for binary classification can be adopted, including the con-
fusion matrix, F1-score, receiver operating characteristic (ROC)
curve, PR curve, and the area under the ROC and PR curves
(a.k.a. AUC). ROC AUC has a value between 0.5 (no skill) and
1.0 (perfect prediction); while PR AUC has a value between k
(no skill) and 1.0 (perfect prediction), where k is the area under
the no-skill PR curve, equal to the ratio of minority examples
(class 1 links in our case) in the dataset. A higher AUC value indi-
cates better predictive performance. For imbalanced classification
problems where the majority of observations are negative cases
and the minority of observations are positive cases, ROC analysis
provides equal insights on the model’s predictive performance in
both cases. PR analysis focuses more on the model’s ability to
predict the minority case, i.e., the positive links in the networks
under current investigation [54].

5 Case Study
In this section, we take Divvy Bike in Chicago as an example to

demonstrate the utility of the proposed GNN-based models for
shared mobility networks. In Sec. 5.2, the GraphSAGE link predic-
tion model is compared with the ANN model to test whether local
network information (i.e., node embedding features) impacts link
prediction. In Sec. 5.3, we verify the generalizability of the

proposed models by setting different link cutoffs. Finally, in Sec.
5.4, a system design case is formulated to illustrate how predictive
models can support system design decisions. Here, the design deci-
sions denote determining where to place new stations, how many
docks to add or remove from existing stations, etc.

5.1 Data Source. The Divvy Bike data are available to the
public [55], and the data for May 2016, referred to as period one
data, and May 2017, referred to as period two data, are used in
this study. The data package contains both station and trip data.
The station data include the ID, name, geographic coordinates,
number of docks, and online date for each station. The trip data
recorded each trip’s start and end station IDs, trip time and duration,
and users’ basic information (e.g., gender and birth year). We
follow the approach described in our previous work [3] to process
the data and build binary-directed trip networks by removing the
links with less frequent trips (that is, those that occurred no more
than four times in a month). Taking the period one network as an
example, a visualization of this binary-directed network is shown
in Fig. 5. The top hub stations’ information for both two periods
is listed in Table 1. The top five hub stations in period one are
observed to be the hubs in period two despite a slight change in
ranking. In terms of POI information, a total of 2269 POIs in
period one and 2403 POIs in period two are collected based on
the method presented in Sec. 4.1. According to Sec. 4.1, each
station has geographic coordinates (two features), the number of
docks (one feature), and POIs (seven features), for a total of ten
features.

Fig. 5 A visualization of the Divvy Bike trip network in May 2016.
The nodes represent docked bike stations, and the directed links
are trips that occur from one station to another with a frequency
of more than 3 times in a month.
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5.2 GraphSAGE-Based Link Prediction

5.2.1 Data Preparation for Artificial Neural Network-Based
Link Prediction. In the ANN model, each candidate link within a
trip network, represented by a pair of nodes, is a data sample. Con-
sequently, there are 285,690 data samples in the period one
network, with 21,221 links classified as class 1 and 264,469 links
as class 0. To reduce variability, the K-fold cross-validation
approach [56] is applied, where K is set to 5. Therefore, we evenly
split all class 1 links into five folds, i.e., 20% data for each fold.
Meanwhile, to avoid imbalanced training, the same number of
class 0 links is randomly drawn without repetition from the class 0
sample pool and added to each fold. With these treatments, there
are around 4244 class 1 samples and 4244 class 0 samples in one
fold. Then, the cross-validation process alternately retains the first
to the fifth fold for validation and the remaining four folds for train-
ing. In terms of the testing dataset, given that Divvy Bike had 582
stations during period two (May 2017), the total number of potential
links from each pair of nodes in the testing dataset is 338,142. The
final result is reported by averaging the K prediction results.

5.2.2 Data Preparation for the GraphSAGE Predictive
Model. In addition to the data discussed above, the GraphSAGE
model also requires network data to learn the node embeddings.
For the training model of node embeddings, we feed it with the
entire period one network. As stated in Sec. 4.3.3, due to the fact
that the period two network is unknown from a prediction point
of view, we take a modified period one network as input for the
node embedding of the period two prediction. For those stations
that are no longer operated in period two, they are removed and
48 new stations are added as isolated nodes. To ensure a fair com-
parison, we stick to the same configuration in the second stage for

training the link classification model as was adopted in the ANN
model.

5.2.3 Experiment Settings. We first employ Bayesian optimi-
zation [57] to perform hyperparameter tuning. The parameters
that need to be optimized and their tuning ranges are listed in
Table 2. In addition, we specify the objective of Bayesian optimiza-
tion to minimize validation loss and set the training stopping crite-
rion as “no improvement in 10 epochs.” The number of tuning
iterations is set to 15, the first five of which are random explora-
tions. To reduce computational expenses, only the fold-one data
are used to probe the best combination of hyperparameter values.
The remaining four folds of the data are trained by following the
same parameter settings.
The results of hyperparameter tuning, as well as other hyperpara-

meter values, are summarized in Table 3. Note that the epoch
number of the optimized tuning results is 103. We extended it to
150 epochs for each training to further ensure the reliability of the
training process. Finally, we ran experiments on a single machine
with one NVIDIA P2200 GPU (5 GB of RAM at 10 Gbps
speed), one 11th Gen Intel Core CPU (i9-11900 2.50 GHz), and
32GB of RAM.

5.2.4 Results for GraphSAGE-Based Link Prediction. We first
assess the performance of these two models using the confusion
matrix and F1-score, as shown in Table 4.3 The left-hand side

Table 2 Hyperparameter tuning settings

Setting items Tuning range

Minibatch size [32, 240]
Learning rate [1 × 10−4, 1 × 10−3]
Number of sampled in- and out-neighbors in two hops1 [5, 50]
Node embedding size [10, 50]

1Note that the numbers of sampled in-neighbors and out-neighbors can be different, we set them the same to
simplify the model.

Table 3 Experiment parameter settings

Setting items Model applied Value

Neighborhood search depth GraphSAGE 2
# of sampled in- and out- neighbors in two hops 26
Node embedding size 26
Input and hidden layer size for GraphSAGE 52

Input and hidden layer size for ANN ANN 20

Minibatch size GraphSAGE and ANN 116
Epoch 150
Learning rate 3.49 × 10−4

Dropout 0

Table 1 Top five hub stations information in the trip networks of period one (May 2016) and period two (May 2017)

Period one Period two

Station ID Station name # of connections Station ID Station name # of connections

287 Franklin St & Monroe St 320 77 Clinton St & Madison St 326
268 Lake Shore Dr & North Blvd 319 287 Franklin St & Monroe St 307
35 Streeter Dr & Grand Ave 317 35 Streeter Dr & Grand Ave 302
77 Clinton St & Madison St 316 91 Clinton St & Washington Blvd 295
91 Clinton St & Washington Blvd 303 268 Lake Shore Dr & North Blvd 295

3The training time for ANN and GraphSAGE are 7min and 35 h, respectively. The
primary factor affecting the computational efficiency of GraphSAGE is the process of
in- and out-neighborhood sampling [45]. However, since our proposed predictive
model is not meant for real-time forecasting, we, therefore, prioritize improving
model performance even if it means sacrificing computational efficiency.
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shows the confusion matrix and the F1-score of the ANN model.
The confusion matrix includes four different combinations of
predicted and actual classes, where there are 271,108± 1830 true
negatives (TNs), 47,177± 1830 false positives, 914± 89 false neg-
atives (FNs), and 18,943± 89 true positives. The true negative rate
(TNR) and the false positive rate (FPR) reveal that 85.18% ± 0.58%
of links in class 0 are predicted correctly, while 14.82% ± 0.58%
are not. Similarly, the true positive rate (TPR) and the false negative
rate (FNR) indicate that 95.40% ± 0.45% of the links in class 1 are
correctly predicted and 4.60% ± 0.45% are not.
Similar results of the GraphSAGE model are listed on the right-

hand side. We observe from these two matrices that the ANNmodel
shows a more accurate true positive prediction where the TPR is
around 7% higher than that of the GraphSAGE model when
taking 0.50 as the probability threshold. However, this outperfor-
mance is offset by the higher true negative prediction of Graph-
SAGE, which is approximately 6% higher than that of the ANN
model. The same conclusion can be reached by comparing their
F1-scores, which show that the F1-score of GraphSAGE is 0.1
higher than the ANN model.
We then compare these two models at the aggregated level by the

ROC and PR AUCs. There are inconspicuous differences between
the two ROC AUC values of the ANN and GraphSAGE models,
both of which are equal to 0.96. Their high AUC value (greater
than 0.95) indicates that these two models show identical and con-
siderable performance when the predictions of the majority class
and the minority class are treated equally important. However, the
evident gap between the two PR curves shown in Fig. 6 implies
that the GraphSAGE model outperforms the ANN model when
the minority class prediction is the focus, i.e., whether the class 1
(positive) links are correctly predicted or not. The PR AUC of the
GraphSAGE model is about 8% higher than that of the ANN

model. This implies that the local network information aggregated
by GraphSAGE can enhance the model’s performance in the predic-
tion of positive links that are more important to design decisions.

5.3 GrapSAGE-Based Link Prediction for Networks With
Different Link Strengths. In Sec. 5.2, we set the link cutoff at
3.03, which is the mean minimum link weight of monthly travel net-
works throughout the year from 2014 to 2017, following the
approach described in our previous work [3]. To assess the gener-
alizability of the proposed predictive model and demonstrate the
importance of neighborhood information for different network
sizes, we change the cutoff value from 0 to 16, corresponding to
the ratio of positive links decreasing from 100% to 10%. Note
that as the number of positive links declines, the data become
even more imbalanced, with the majority of links being negative,
thus making prediction even more challenging. Furthermore, to
more easily trace the trend of prediction accuracy, we follow the
experiment settings given in Table 3 and perform a five-fold cross-
validation to train models with different link cutoff points.

5.3.1 Results for Link Prediction for Networks With Different
Link Strengths. The evaluation metrics include F1-score, ROC
AUC, and PR AUC, all of which are averaged based on five-fold
results. We first investigate the overall predictive performance of
both models using F1-score when the probability threshold is
equal to 0.5, which is shown in Fig. 7(a). It is evident that the pre-
dictive powers of both GraphSAGE and ANN models decrease
when the network becomes sparse, and the reason could be attrib-
uted to the aforementioned worse imbalanced issues of sparser net-
works. Furthermore, the consistently higher F1-score of the
GraphSAGE model suggests that neighborhood information
indeed plays a role in improving prediction accuracy. The same
conclusions can be drawn from the PR AUC plots in Fig. 7(b)
when the emphasis is placed on the prediction of the minority
class (positive links) across all probability thresholds.
In contrast, we find that regardless of network size, both ANN

and GraphSAGE predictive models maintain the same high ROC
AUC, which is around 0.96. This implies that these two models
share a similar predictive power when putting the spotlight on
both the majority and minority classes, and this power is robust
enough to against the decline of the minority class.
Lastly, to further validate that the decreased performance of

GraphSAGE is irrelevant to the network topology, we conducted
an experiment using a subset of 2016 training data (showing
totally different network topology) and 2017 testing data to test
the model’s predictive power. These synthetic data are generated
by identifying the top 166 popular Divvy Bike stations in 2016
and the trips that occurred among these stations in 2016 and
2017. Although the trip networks constructed by these stations
and trips exhibit distinct typologies in terms of their degree distribu-
tions compared to the real trip networks, the same decreased trend
of predictive performance is still observed. Furthermore, the
decreasing rate of the performance of both the synthetic network
and the real network is highly correlated with the shrinking speed
of the network size, thereby again demonstrating that the primary

Table 4 Confusion matrices of period two link prediction via the ANN and GraphSAGE models (probability threshold = 0.50)

ANN link prediction GraphSAGE link prediction

0 1 0 1

Actual 0 271108± 1830 47177± 1830 290619± 1164 27666± 1164
(TNR 85.18% ± 0.58% ) (FPR 14.82% ± 0.58%) (TNR 91.31% ± 0.37%) (FPR 8.69% ± 0.37%)

1 914± 89 18943± 89 2259± 122 17598122
(FNR 4.60% ± 0.45%) (TPR 95.40% ± 0.45%) (FNR 11.38% ± 0.61%) (TPR 88.62% ± 0.61%)

F1-score 0.44± 0.01 0.54± 0.01

Fig. 6 PR curve example of period two link prediction using the
ANN and GraphSAGE predictivemodels in fold four. The average
PR AUCs are 0.59± 0.01 and 0.67 where the GraphSAGE model
has a higher AUC than the ANN model in the PR curve.
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reason for poor prediction accuracy comes from the imbalance issue
of sparse networks, rather than from network typologies.

5.4 Systems Design Decision Support. In this section, the
proposed GraphSAGE model is utilized to assist BSS designers
or other stakeholders in predicting system performance after a
design strategy is proposed. We first formulate a design case and
then evaluate the influence of the design decisions on users’ trips
and compare the prediction accuracy of GraphSAGE by comparing
it with the baseline ANN model.

5.4.1 Divvy Bike Design Case. There are two levels of design
decisions in this system. The first is capacity-level design decision
that a designer should determine, i.e., the stations that need to be
expanded or contracted and the number of docks that each station
needs to add or remove. The second is station-level design decision,
that is, a designer needs to decide (at a certain time point) which
existing stations need to be removed and where new stations shall
be built. By comparing the data from the Divvy bike station in
May 2017 with the data from the Divvy bike station in May
2016, we assume that a decision maker proposed the following two-
level design decisions at the end of May 2016 and would like to esti-
mate their influence by predicting the connections of these key sta-
tions in May 2017.

(1) The capacity-level design decision: Stations in the set S1=
{341, 195, 97, 72} are planned to expand by adding 16
docks; stations in the set S2= {444, 496, 2, 445, 400, 489,
412, 407} are planned to shrink by removing eight docks.
The locations of the stations in sets S1 and S2 are marked
with pins in the letters “E” and “C”, respectively, in Fig. 8.

(2) The station-level design decision: Station in set S3= {372} is
planned to remove; 48 new stations in set S4= {524, 578,
522, 622, 550, 531, 517, 581, 575, 585, 523, 584, 580,
525, 520, 576, 619, 590, 591, 592, 623, 589, 586, 526,
620, 515, 579, 582, 514, 588, 573, 583, 577, 571, 574,
587, 595, 405, 527, 519, 602, 603, 598, 604, 605, 599,
606, 612} are planned to construct. The locations of the sta-
tions in sets S3 and S4 are marked with pins in the letters “X”
and “N”, respectively, in Fig. 8.

We update the May 2016 network by applying these proposed
design decisions. For example, the capacity and location informa-
tion designed for the new stations in the set S4 is added to the
station list of 2016. Regarding their POI data, we adopted the
approach described in Sec. 4.1 to count the number of each type
of POIs around these designed stations in 2016. With the updated
2016 network, we used the trained GraphSAGE and ANN models
to predict the connections of these critical stations within sets S1,

S2, and S4, as well as evaluate the prediction by comparing them
with real connections in 2017.

5.4.2 Capacity-Level Station Connection Prediction. Taking
the expansion station set S1 as an example, we assume that the sta-
tions in S1 are connected with n out of the N stations in period two in
reality. For example, these stations connect n= 149 stations in 2017

Fig. 7 F1-scores and PR AUCs change with the number of links. The rightmost points in the plots correspond to 46,352 links
when the cutoff value is equal to 0. We notice that the average F1-scores and PR AUCs of both GraphSAGE and ANN models
decrease logarithmically with the shrink of the network sizes, and the GraphSAGE model consistently has higher values than
the ANN model. (a) Average F1-score (with error bars, probability threshold = 0.5) and (b) average PR AUC (with error bars).

Fig. 8 The geographical locations of stations in sets S1, S2, S3,
and S4
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and Divvy Bike had N= 582 in total that year. The GraphSAGE
model predicts that these stations connect with M stations when
the probability threshold is p, and m stations are correctly predicted.
Therefore, the true positive (TP) equals m, the FN equals n−m, the
false positive (FP) equalsM−m, and the TN equals N+m− n−M.
The PR curves correspondingly obtained across all probability
thresholds from 0 to 1.
The confusion matrices and F1-scores of the expansion stations in

S1 and contraction stations in S2 when the probability threshold is
0.50 are presented in Tables 5 and 6. The results in Table 5 indicate
that ANN more accurately predicts expansion stations’ connections
with higher TPR (98.93%) than GraphSAGE (TPR= 93.83%), but
greatly sacrifices TNR (64.53%). In the contraction case, t-tests are
conducted, comparing the means of ANN and GraphSAGE in
terms of their TNRs, TPRs, and F1-scores. The null hypothesis is
that there is no difference. The resulting p-value, 0.01, denotes a

significant difference between the means of the ANN and the Graph-
SAGE TPRs, indicating that the GraphSAGE TPR (95.96%) is
higher than that of the ANN (92.77%). However, the p-values of
0.23 and 0.07 in the tests of TNR and F1-score imply that ANN
and GraphSAGE perform an identical predictive power in the con-
traction case when the probability threshold = 0.50.
Overall, the F1-scores of GraphSAGE on both expansion and

contraction cases show its superiority, implying the important role
of neighborhood information in influencing users’ behaviors in
BSS. This conclusion is further validated by the PR curves shown
in Fig. 9. That being said, when designers are to evaluate their pro-
posed capacity-level design strategies, the GNN-based model is
more reliable.
To visually demonstrate the models’ predictive performance in

this regard, we take Station 2 in S2 as an example, as shown in
Fig. 10. The graphs show a decent predictive performance where

Table 5 Confusion matrices of expansion station trip network connections via ANN and GraphSAGE predictive models (probability
threshold = 0.50)

ANN prediction GraphSAGE prediction

Not connection Connection Not connection Connection

Not connection 279± 12 154± 12 365± 3 68± 3
(TNR 64.53% ± 2.81% ) (FPR 35.47% ± 2.81%) (TNR 84.20% ± 0.69%) (FPR 15.80% ± 0.69%)

Connection 2 147 9± 2 140± 2
(FNR 1.07% ± 0.33%) (TPR 98.93% ± 0.33%) (FNR 6.17% ± 1.61%) (TPR 93.83% ± 1.61%)

F1-score 0.66± 0.02 0.78± 0.01

Note: “Not Connection” denotes stations that were not connected to the stations in the set S1 by trips in 2017 and vice versa for the “Connection” term.
Similar definitions apply to Tables 6 and 7.

Table 6 Confusion matrices of contraction station trip network connections via ANN and GraphSAGE predictive models (probability
threshold = 0.50)

ANN prediction GraphSAGE prediction

Not connection Connection Not connection Connection

Not connection 316± 21 172± 21 331± 8 157± 8
(TNR 64.84% ± 4.21%) (FPR 35.16% ± 4.21%) (TNR 67.75% ± 1.62%) (FPR 32.25% ± 1.62%)

Connection 7± 1 87± 1 4± 1 90± 1
(FNR 7.23% ± 1.56%) (TPR 92.77% ± 1.56%) (FNR 4.04% ± 1.04%) (TPR 95.96% ± 1.04%)

F1-score 0.50± 0.03 0.53± 0.01

Fig. 9 PR curve example of capacity-level design decision evaluation through four-fold ANN and GraphSAGE trainedmodels by
predicting the network connections of key stations. We observe that the AUCs of the GraphSAGE model are 3–5% higher than
the ANNmodel in both expansion and contraction cases. For the expansion case, the average PRAUC of the Graphsagemodel is
0.88, which is 3% higher than that of the ANNmodel, equal to 0.85±0.01. In terms of the contraction case, the average PR AUCs
of the Graphsage and ANN models are, respectively, 0.78± 0.01 and 0.73±0.02. (a) Expansion case and (b) contraction case.
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over 80% connections of Station 2 are correctly predicted. Further-
more, GraphSAGE, which considers neighborhood information,
slightly improves the prediction accuracy and correctly predicts
the geographically farthest connection of Station 2, which is
located in the lower right corner of the plots (highlighted by the
dashed square).

5.4.3 Station-Level Station Connection Prediction. With
regard to predicting the connections of the newly built stations in
S4, we tested one ANN model and two different GNN models, as
shown in Fig. 11. The distinction between GraphSAGE and
GraphSAGE-GroundTruth is that GraphSAGE kept the newly
built stations independent and did not include their neighborhood
information in the embedding. GraphSAGE-GroundTruth,
instead, took the real neighborhood information from the new sta-
tions in May 2017 into the construction of network embeddings
to test the best scenario that GraphSAGE prediction can reach.
The AUC results indicate that GraphSAGE shows no better predictive
power than ANN for these isolated new stations when there is no
neighborhood information input. This is validated by the higher AUC
of the GraphSAGE-GroundTruth model and its F1-score in Table 7.

6 Limitations
There are a few limitations of the proposed GNN-based design

decision support model in the current study that can lead to future
investigations. First, the relatively lower predictive performance
for the BSS network with a smaller size, having a worse imbalance
issue, shows that our proposed model is better suited for link predic-
tion of a denser network. It should be worthwhile to study methods
that can address this imbalance challenge and thus broaden the
application of the model.

Second, a few assumptions made in this work could potentially
impede the model from capturing reality, thus weakening its valid-
ity. For example, in the design case study given in Sec. 5.4, we
assumed that all design decisions are made at the same time, e.g.,
at the end of May 2016. However, in reality, the decisions could
be scattered across different months, so a dynamic model is pre-
ferred in this scenario to predict the station linkage in the short
term. Also, we observed that it was rare that a user rented a bike
and then returned it to the same location. But, our model is not
designed to predict rare self-loop links. For example, in a mini-
experiment, we selected a station (station 30) at random and
created two duplicate stations (1030 and 1031) with identical attri-
butes, such as the same dock numbers, locations, and surrounding
POIs, as well as the same network neighbors. We then used the
trained GraphSAGE model to predict the link probabilities of sta-
tions 30, 1030, and 1031 connecting to other stations separately.
According to the results, we observed that there is a high probability
of forming connections among the three duplicated stations, leading
to the dominance of self-loop trips. Therefore, when using the
model in a situation where there are duplicated nodes, it is better
to assume that self-loop trips are not allowed. Another strategy is
to combine all duplicated nodes in one node by stacking the
number of docks of each node.
Third, the accuracy in predicting the newly added stations is rel-

atively low, as shown in Sec. 5.4.3. To make this model applicable
to the new stations, efforts are required to test more adjacency
matrix approximation approaches and, subsequently, better esti-
mates of the network neighborhood information of newly intro-
duced stations. When applying the proposed model for decision
support, it is more suitable to predict connections and travel
demand between stations that have already been on the network.
Finally, in this study, only a few node features (station capacity,

geographic coordinates, and surrounding POIs) are considered.
However, there could be other factors influencing the accuracy of
predictions, such as unserved travel demands (e.g., instances
where people attempted to rent a bike at an empty station). One
key reason for missing this information is the availability and acces-
sibility of the data. For example, obtaining data on failed rental
attempts at an empty station, which is essential to capture unserved
travel demands, is not readily available in the current dataset.
However, our proposed model is adaptable and generalizable to
incorporate additional features. In our future study, a potential
way to address this data limitation is to conduct surveys or statistics
from BSS service Apps to estimate unserved travel demands.

Fig. 10 Link prediction of contracted design case, Station 2,
using the GraphSAGE and the ANN predictive models. The size
of the dots depicts the capacity of the station. (a) The Graph-
SAGE predicted result when the probability threshold is equal
to 0.78, where 0.78 is the optimal threshold for the GraphSAGE
PR curve in Fig. 9(b). Sixty-eight of the 80 connections
(85.00%) of Station 2 are correctly identified. (b) The ANN pre-
dicted result when the probability threshold is equal to 0.88,
where 0.88 is the optimal threshold for the ANN PR curve in
Fig. 9(b). Sixty-seven of 80 connections (83.75%) of Station 2
are correctly predicted. For the selection of optimal thresholds,
please refer to our previous work [50].

Fig. 11 PR curve example of station-level design decision eval-
uation via the fourth fold ANN andGraphSAGE trainedmodels by
predicting the network connections of the key stations. The
average PR AUCs of ANN, GraphSAGE, and GraphSAGE
(Ground Truth) by five folds are 0.33±0.02, 0.36± 0.02, and
0.55± 0.04.
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7 Conclusion
In this study, we present a complex network-based approach to

predict whether two stations in a shared mobility network would
have sufficient travel demand to form a connection over a long time-
scale. The utility of the proposed approach in supporting system
decisions in shared mobility networks is investigated and validated.
In particular, we examine whether local network information
impacts link formation using GNN models. In a case study of
Divvy Bike in Chicago, two-hop neighborhood information is
used to generate node embeddings for link prediction. The results
show that the GNN model with local network information outper-
forms the one without, revealing the important role of local
network structures in the formation of trip networks at the system
level. We also test the model performance using local network
information by changing the link strength from weak to strong, cor-
responding to the network size from large to small. The results indi-
cate that the GNN model has maintained better performance than
the ANN model regardless of the imbalanced data issue.
Finally, we present a design case study to illustrate how to apply

the GNN-based predictive model to assist system designers to gain
insights into their proposed design decisions. Using the trained
GNN model to predict the network neighbors of the expansion sta-
tions, the contraction stations, as well as the newly built stations, we
demonstrate the applicability of the predictive model in helping
system designers make an initial assessment of the network connec-
tions of these critical stations. However, despite the fact that the
current prediction of new stations is not satisfactory, the Groud-
Truth result validates that improvement can still be achieved once
a better approximation of the adjacency matrix is obtained.
In future work, as mentioned above, we plan to extend the current

model to the link prediction of weighted trip networks. We also
would like to conduct more tests to find additional factors to
which the decreased performance in Fig. 7 could be attributed.
Lastly, more exploration of the adjacency matrix approximation
approach will also be carried out to generate a more powerful pre-
dictive model for the evaluation of station-level design decisions.
For example, one potential approach is to treat the edge prediction
task as an iterative process. In this approach, the predicted result
from the GraphSAGE model described in this paper serves as
input for another identical GraphSAGE model. The iterative
process continues until a satisfactory level of accuracy is achieved.
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