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Abstract

This paper proposes a network analysis framework
based on geographic information systems (GIS) to
study the development of megaregions in support of
urban planning and policy-making. The framework
includes a new approach to model geo-shaped polygon
data of census places as the Place Geo-Adjacency
Network (PGAN). In particular, the integration of
descriptive network analysis and degree distribution
analysis supports the study of spatial connections,
geospatial growth, hub effects, and expansion patterns
in megaregions. To demonstrate this framework, a
case study was conducted on four US megaregions
to study their growth and expansion in the last 40
years since 1980. The degree distribution analysis
captures the small-world property and quantifies the
level of geospatial connectivity influenced by the hub
effects. Policymakers can use the model as a decision
support for urban planning and policy design to reduce
disparities and improve connectivity in megaregion
areas.

Keywords: Geographic information systems (GIS),
megaregion, complex networks, urban planning,
geospatial network analytics, degree distribution.

1. Introduction

Geographic information systems (GIS) — engineered
for storing, retrieving, manipulating, analyzing, and
mapping geographic data — have experienced significant
advancements and widespread adoption in the past five
decades [Liietal.,2019]. The central component
of GIS, which involves using a location referencing
system to analyze data in relation to other locations,
makes it a powerful tool for facilitating urbanization
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research [Church, 2002]. For example, GIS was
integrated with artificial neural networks (ANN)
to model urban expansion, taking into account
transportation factors and the density of important
landscape features [Pijanowski et al., 2009]. In another
study, Jat et al. explored the application of
remote sensing and GIS in assessing the spatial and
temporal phenomena of urbanization and its impact on
groundwater [Jat et al., 2009]. Through a case study,
the authors validated the utility of these technologies to
reveal the correlation between the decline in the water
table and quality and urbanization. These examples
demonstrate the power of GIS to uncover valuable
information to facilitate urban research.

In the latter half of the 20th century, megaregions
! have emerged as a new scale of geography resulting
from the continuing expansion of metropolitan
regions. They are often identified based on population
density, population growth, employment growth,
etc. [Hagler, 2009]. Given the significance of
megaregions as a catalyst for economic growth,
innovation, and collaboration in driving regional
development, megaregion analysis has become a
focal point for urban systems design and planning,
which have attracted substantial attention from both
researchers and policymakers. For example, Guo and
Zhang utilized spatial cluster analysis and mixed-effect
regression analysis to investigate the factors influencing
the expansion of the Texas Triangle megaregion,
employing various data sources including land coverage
and imperviousness data, transportation data, and
socio-demographic data [Guo and Zhang, 2021]. The

'A megaregion consists of two or more metropolitan areas and
their integrated hinderland. The U.S. Census Bureau has not yet
formally adopted megaregion as a census geographic unit. Delineating
megaregion boundaries remains an academic exercise. In this
study, we follow the working definition of megaregions provided in
[Yaro et al., 2022].
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results found that economic growth, population, and
highway density are three key factors to motivate
the expansion of the Texas Triangle. In another
paper, Woodall et al. conducted a comprehensive
review study on megaregions, highlighting three
prominent approaches.  These approaches include
an interconnected analysis of megaregions that
integrates demographical, economic, environmental,
and infrastructural factors. They also discussed a
cohesive urban nodes analysis of megaregions based
on transportation infrastructure data, as well as a
boundary definition approach using satellite data.
This review emphasizes the increasing popularity
of interconnectedness analysis in megaregion
studies [Woodall et al., 2023].

Although existing studies on interdependence
in megaregions have provided deep insight into
economic, environmental, infrastructural, cultural,
and historical relationships [Woodall et al., 2023],
geographic interactions between cities have received
little attention. However, it is a crucial factor influencing
the development and expansion of megaregions. For
example, these geographic interplays unveil varying
constraints and opportunities for hub cities versus rural
cities. Hub cities benefit from shorter distances to
their surrounding cities, facilitating socio-economic
exchanges, but encounter challenges when it comes
to expanding their physical boundaries. In contrast,
rural cities face fewer limitations in land expansion, but
their isolation from other cities hampers their economic
development. Planners and policymakers must consider
these geographic distinctions and relationships when
framing development policies and strategies.

To gain a deeper understanding of the geographic
interdependencies within megaregions, we propose a
GIS-based network analysis framework to model shared
boundary relationships among census places’ that are
stored as geo-shape polygon data in GIS. We name
this network model as the place geo-adjacency network
(PGAN) model. This analytical framework offers
several advantages. First, it provides a computational
representation of the spatial connections between places,
enabling us to quantify the role of each place within
the megaregion based on network metrics, such as the
node degrees (the number of connections of a place).
Second, by studying the network evolution, we can
trace and track the geospatial growth and expansion of
megaregions. This is particularly valuable in identifying
spatiotemporal patterns during urbanization. Third, the

2In this study, we follow the U.S. Census Bureau to define a place
as a concentration of population that is assigned with a name, locally
recognized, and is not a part of any other place. By census definition,
cities, incorporated or unincorporated, are specific types of places in
certain context [Ratcliffe et al., 2016].

network model is computationally and visually effective
in handling large-scale datasets, providing a solution to
the use of GIS data to improve transportation and policy
decision-making in urban planning.

This study provides new knowledge on the
expansion of megaregions in the last 40 years and
contributes to the literature in two aspects. First,
we performed degree analyses on the PGAN topology
and hub effects. The analysis results show that
the proposed PGAN carries a small-world network
property where the hub cities play a key role in
determining the level of geospatial connectivity of a
megaregion. The quantification of hub effects and
the characteristics of PGAN topology offers valuable
insight for urban planning purposes. For example,
the findings can guide the strategic development of
transportation infrastructure and the optimization of
transportation networks in urban systems, taking into
account the effects of the centers. Additionally, the
degree analysis identifies areas with lower connectivity
and spatial integration, allowing planners to develop
intervention strategies to improve connectivity and
reduce disparities in less well-connected regions.

Second, a comparative analysis of the evolution
of four megaregions in the US over a span of 40
years was conducted. They are the Texas Triangle
(Texas), Northeastern Region (Northeast), Northern
California (NorCal), and Southern California (SoCal)
megaregions. The analysis finds that the PGAN of each
megaregion exhibits a distinct topology that remains
stable over time. For example, unlike the other
three regions with a right-skewed degree distribution,
the Northeast shows a more even degree distribution,
indicating weaker hub effects in that region. The
evaluation of hub effects in the other megaregions shows
that Texas has a number of highly connected cities,
resulting in shared responsibilities between hubs, while
Los Angeles is the only major hub for SoCal. Because
SoCal relies heavily on Los Angeles, it experiences
a reduced influence of the hub effect and becomes
more susceptible to the consequences of losing hub
functions.  The presence of a solitary hub poses
challenges to network connectivity in SoCal, evident in
its larger average path length compared to that of Texas.
Furthermore, in the time dimension, by tracking the
evolution of PGAN over time, the rise of new hub cities
can be identified. For instance, the number of places
sharing boundaries with Austin, TX has risen from 3 to
19, while Bakersfield, CA has seen an increase from 1
to 23 in four decades.

The remainder of the paper consists of three sections.
Section 2 provides an introduction to the research
methodology. In Section 3, a case study is demonstrated,
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and results and discussions are presented. Finally,
Section 4 summarizes the findings and concludes the
paper with closing remarks and future work.

2. Research Methodology

Figure 1 displays the proposed GIS-based PGAN
analysis framework for megaregions. The detailed
explanations are presented in the following sections.

2.1. PGAN modeling and visualization

To create and visualize the PGAN model, we
first obtain the geo-shape polygon data of census
places, which are the units of analysis for this
study, from NHGIS (National Historical GIS,
http://www.nhgis.org/). We then select and extract
the topological data of the places (including cities)
inside megaregions. Finally, we create the network
measures of the places based on their spatial adjacency
attributes. The network measures of the places are
then used as inputs for PGAN generation in Gephi,
an open-source network visualization and analysis
software. In PGAN, each node represents a unique
place. Given that geographic adjacency is reciprocal, an
undirected link is established between two nodes when
the places share boundaries. The nodes are mapped
geographically with their latitude and longitude using a
Gephi plugin called Geo Layout. The PGAN generation
process quantitatively captures geographic connectivity
and interdependence between different places within
a specific region. That is, a standalone place without
shared boundaries is considered a zero-degree node.
On the contrary, a high-degree node represents a place
with high connectivity to other surrounding places and
a higher tendency to behave as a hub city, connecting
many smaller cities, towns, and settlements.

2.2. Analysis method

Descriptive network analysis After obtaining the
PGAN model, we first perform a descriptive network
analysis to gain a better understanding of the network
characteristics.

* Network size: The number of nodes and edges
enables us to mathematically determine the size
of the network and the scale of urban expansion
over time.

e Location of hubs: The location of nodes with
a high degree demonstrates a significant area
with high activities and flow volumes. A hub
is an intuitively interesting phenomenon because

of its role as a traffic facilitator of activities
and information. The loss of well-connected
hubs can cause significant disruption to network
function [O’Kelly, 2015].  Capturing such a
hub effect allows us to better quantify the
interdependence of cities in megaregions and
observe its trend over time.

e Network metrics: In this study, the average path
length and the average clustering coefficient are
utilized to examine the structural characteristics
of the PGAN. For example, by calculating the
average path length in PGAN, we can gain insight
into the geospatial interconnections and proximity
of places within the megaregion. A reduction in
an average path length signifies a higher level of
connection between places within the region. In
contrast, a longer average path length suggests
that places are more distant and separated from
each other within the megaregion.

Network degree distribution analysis Degree
distribution, along with descriptive network analysis,
is of significant importance in understanding network
properties and plays a central role in network
theory [Barabasi and Pésfai, 2016]. It offers valuable
statistical insights by determining the probability that
a randomly selected node in the network has a specific
degree. In urban studies, degree distribution analysis
has been effectively employed to examine the linkage
properties of urban street networks [Porta et al., 2006]
and assess the connectivity of urban bus transport
networks [Chen et al., 2007]. These applications have
demonstrated the viability of using degree distribution
analysis in urban research. This paper employs degree
distribution analysis to quantitatively characterize and
evaluate PGAN connectivity, investigate the trend of
PGAN expansion, and examine the impact of hub
nodes.

The degree distribution is plotted through a
complementary cumulative distribution (CCDF) on
logarithmic-scaled axes [Fornito et al., 2016]. The
CCDF conveys the probability that a random variable
node X will take a degree that is larger than a random
value, x, defined in Equation 1.

Fx(z) = P(X > 2) (1)

Degree distributions tend to be highly skewed or
asymmetric in most real networks due to the
existence of hubs, a characteristic of scale-free
types. [Albert and Barabasi, 2002, Bettencourt, 2013,
Mori et al., 2020]. Unlike a random network where
the resulting degree distribution follows the Poisson
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distribution [Barabdasi and Pésfai, 2016], indicating
that most nodes have comparable degrees and nodes
with a large number of links are absent, a scale-free
network follows the power-law distribution where it has
the majority of the nodes with only a few links while
a few highly connected hubs hold most of the links.
Figure 2 shows a comparison of fits between Poisson
distribution and power-law distribution of Texas node
degree distribution in year 2020. In our case, if PGAN
performs as a scale-free network, it obeys a discrete
power-law with a probability distribution defined in
Equation 2, where C' is a normalization constant, and «
is known as the scaling parameter of the power-law.

p(r) =Pr(X =2)=Cz™® (2)

It is rare for an empirical phenomenon to follow
the power-law distribution for all values of x, evidently

shown in Figure 2 where points along higher node
degrees are not properly fitted to the power-law
distribution. Hence, a power-law is commonly fitted
to the tail of the distribution starting at some value
greater than the minimum value of z, called z,,i,
[Clauset et al., 2009]. To further investigate the fitting
of the heavy-tailed power-law for the PGAN of each
region, we first estimate their acceptable x,,,, the
minimum value where the scaling relationship of the
power-law begins. Then, we conduct a goodness-of-fit
test for the power-law distribution fitting and compare
their hub effect with the corresponding «.

The poweRlaw package in R [Gillespie, 2015] is
implemented to estimate the optimal lower bound that
minimizes the distance between CDFs of empirical
data. It also reports the fitted model along with
the Kolmogorov-Smirnov (KS) statistic for the fit.
Then we apply a bootstrapping procedure outlined by
[Clauset et al., 2009] to perform a goodness-of-fit test
for power-law fitting with parameters including z,x,
power-law exponent «, and its empirical distance. After
running through 1000 power-law distributed synthetic
data sets using predetermined parameters, the test
calculates the P-value that indicates the fraction of
time when synthetic distances are larger than empirical
distances. The power-law is considered not a good
fit to the data and is ruled out when P-value < 0.1
[Conklin and Bressler, 2021], and we accept the first
ZTmin Where the P-value for power-law fitting is greater
than or equal to 0.1 for future analysis.

2.3. Analysis dimension
After obtaining the outlined analysis, we propose to

conduct the analysis in two dimensions.

e Spatial dimension: Investigate similarities and
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differences across different megaregions driven
by their unique network topology.

¢ Time dimension: Examine the evolution of PGAN
by tracking the trend of change in CCDF curves
and assessing how the effect of hub nodes has
evolved, whether it has increased, decreased, or
remained unchanged.

By cross-analyzing various megaregions spatially and
dynamically, we can gain a deeper understanding of
megaregions’ characteristics, their interdependence, and
urban development trend over time.

3. Case Study

The proposed framework is adopted and presented
in a case study concerning sample megaregions in the
United States.

3.1. Data source

The case study focuses on the degree distribution
of 4 out of 13 megaregions in reference to
[Yaro et al., 2022], including Texas, Northeast,
NorCal, and SoCal, as shown in Figure 3. Texas
is selected first due to its unique triangular geometry
formed by three major metros including Dallas,
Houston, and San Antonio-Austin, which incur
considerably high commuting volumes along their
edges [Zhang and Lan, 2022].  Apart from Texas,
which is located in the south central region of the
United States, Northeast and California are selected to
represent megaregions on the East and West Coasts,
respectively. In accordance with the definition presented
in Figure 3, California is further divided into NorCal
and SoCal. These four choices of megaregions represent
county clusters with high flow volumes in different
parts of the country. For PGAN modeling, we focus
primarily on GIS datasets including:

* Polygon shape files of census places in Texas,
Northeast, NorCal, and SoCal that lie within
each megaregion, spanning four decades across
five timestamps from 1980 to 2020. The data
source is the National Historical Geographic
Information System (IPUMS NHGIS) and the
polygon shape files are census-designated places
[Manson et al., 2017].

e Topologial data for constructing network
measures and latitude and longitude data for
network geographic mapping.

aaaaaa

vemer UNITED
STATES

| Morkerrey

Figure 3: Location of the four megaregions studied

3.2. PGAN visualization and descriptive
analysis

PGAN size and visualization The number of nodes
and edges for each megaregion at five timestamps is
summarized in Figure 4. Figure 5 represents the
established PGAN visualizations for each region in
2020. Because the Northeast is a large region spanning
multiple states, the network size is reflected through its
significantly higher number of nodes and edges. Texas,
NorCal, and SoCal all have comparable network sizes
throughout the years, with Texas having the highest
number of nodes between the three, but the edge size in
the medium between California megaregions. Overall,
we are able to capture the expansion in network size
across the regions within four decades.

Location of hubs Geographic location is an essential
underlying factor that affects the characteristics of
each megaregion and the development of the hubs in
it. The locations of the highly connected places in
2020 are marked in Figure 5. Texas has a number
of major places with comparable degrees, namely
Houston (41), Fort Worth (31), Dallas (25), and San
Antonio (23). These four metros have remained the
top most connected places since 1980. Meanwhile, by
tracking the evolution of PGAN over time, we observed
the rise of new places. For example, the number of
places that share boundaries with Austin increases
from 3 to 19 in four decades. In terms of SoCal, it
comparatively has one major hub which has always
been Los Angeles (42), followed by Bakersfield (23)
and San Diego (17) in 2020. The other places apart from
these well-connected metros are distributed with lower
degrees for both megaregions. More specifically for
SoCal, Los Angeles’ degree has more than double that
of the second-ranking place. Because of such dispersion
in degree distribution, we notice distinct tail shapes for
Texas and SoCal. SoCal, however, is more susceptible
to network disruption as Los Angeles is solely bearing
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Figure 4: Network size across years

the major role of traffic facilitator compared to the
distribution of activities between different hubs in
Texas.

The Northeast and NorCal share similar megaregion
shapes which allow them to expand mostly vertically in
the north and south directions. The main hubs of the two
regions, New York (19) and San Jose (14), are bordered
by a body of water. Therefore, the city expansion is
more restricted and naturally dispersed to other places,
namely Washington, D.C. (20) and Philadelphia (16) for
the Northeast, and Sacramento (13), Richmond (12), and
Walnut Creek (12) for NorCal. On the contrary, Texas
has an advantage compared to the other regions because
of its substantial land area. Aside from Houston, the
other places are less confined, allowing them to expand
in any direction. Therefore, Texas constitutes more
high-degree nodes than other megaregions.

Average path length In addition to network size
and geographic locations, average path lengths and
average clustering coefficients, shown in Figure 6(a)
and 6(b), contribute to our deeper understanding of
the expansion pattern and geospatial interconnections of

megaregions. The average path length ({d)) quantifies
the average distance between all pairs of nodes in
the network [Barabasi and Posfai, 2016]. There is an
obvious trend over the years where the Northeast has
the highest (d), followed by NorCal, SoCal, and Texas,
showing that the overall geospatial connectivity of Texas
is much higher than other megaregions. Specifically,
Texas and the Northeast have an overall increasing
trend, indicating that as network size increases, the
path length to get from one place to another becomes
greater, on average. Meanwhile, NorCal and SoCal
have an almost identical trend that starts out with a
rise in (d), then the values stabilize from 2000 to
2020 at approximately 8.4 and 6.5, respectively. This
means that, regardless of the megaregion expansion,
the average path length between each pair of places in
NorCal and SoCal remains steady in the latter decades.

Global clustering coefficient The level of place
connectivity is explored further with the clustering
coefficient (CC). In this study, we are specifically
interested in the global CC which represents the degree
of connectivity for the whole network, instead of at
any local node. The CC captures the probability
that any two randomly chosen neighbors of a node
with a degree of at least two are linked together
[Latapy, 2008]. In support of an increase in average
path lengths as time progresses, the CCs of Texas PGAN
and Northeast PGAN have an overall decreasing trend
from 0.553 to 0.507 for Texas and 0.484 to 0.431 for
the Northeast. NorCal has the most obvious increase
trend in average CCs, rising from 0.460 in 1980 to
0.503 in 2020. SoCal, on the other hand, has a more
fluctuating trend but ends up with the highest value of
0.546 in 2020. The expansion pattern of the places
could influence such a fluctuation. For example, an
expansion surrounding a well-established area explains
the higher probability that neighbors of a node are
connected. In summary, the Northeast and Texas
networks have been shown to experience an increase in
average path length and a decrease in average CC over
time. NorCal and SoCal networks can maintain greater
resilience in geospatial interconnections. We continue
our investigation with the network degree distribution
analysis in the following section to gain more insight
regarding network connectivity and expansion.

3.3. PGAN degree distribution analysis

Log-scale CCDF analysis We conduct the degree
distribution analysis of log-log CCDFs of the PGAN
and fit a power-law distribution to capture the scale-free
property. The resulting CCDF plots are shown in Figure
7 and are accompanied by that of the year 2020 with
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its fitted power-law line. It is interesting to observe
that each megaregion has uniquely shaped degree
distributions, while commonly sharing a relatively
stable trend along the beginning of the distribution.
The curves follow a similar downward slope across five
timestamps for each megaregion when node degrees are
less than or equal to 10. More noticeable deviations
occur along the tail of the distributions, where the degree
of the node ranges from 10 to 45. This supports the
characteristic of the long-tailed distribution of PGANS.
The degree distribution is evenly distributed for the
Northeast and NorCal, that is, number of nodes with low
and high degrees are comparable. Meanwhile, Texas
and SoCal have a more distinct tail shape, displaying
a more apparent pivot point that indicates an abrupt shift
to a node or various nodes with larger degrees (i.e.,
the hubs), where the rest of the node distributions are
concentrated on the lower node degrees.

Fitting the power-law distribution We identify
the acceptable x,,;, values from the bootstrapping

procedure introduced in Section 2.2 and use this method
to fit the power-law distribution across four decades for
all regions. The resulting values for each megaregion
are as follows:

Xmin,Texas = 3, Xmin,Northeast = 10,
Xmin,NorCal = 5, Xmin,SoCal = 6

It is interesting that Texas, despite its larger network
size, has a x,,;, at 3, lower than that of both NorCal
and SoCal. From this finding coupled with its CCDF
shape shown in Figure 7, we claim that Texas has
a higher proportion of nodes with higher degrees,
while NorCal and SoCal’s nodes are concentrated more
heavily towards the lower degree distribution. The
power-law fitting occurs late at x,,;, of 10 for the
Northeast, considering that the most connected node
has the maximum degree of 20 from 2000 to 2020.
Therefore, we observe that Northeast has a tendency to
behave as a random network, where most of the nodes
have comparable degrees.

The corresponding z.,,;, values are used to fit the
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Figure 6: Network Metrics Investigated

power-law distribution to the degree distribution of each
region and decade, and the power-law exponents, «, are
extracted. The values are shown in Figure 8, ranging
from 2.965 to 5.822. To categorize our analysis of «
values in a proper regime, the average path length of four
megaregions across five timestamps is plotted against
their number of nodes in log-scale, presented in Figure
9. It is observed that the InN curve, representing the
small-world regime [Barabasi and Pésfai, 2016], is the
closest to our megaregion data points. A small-world
network is characterized by a small average shortest
path length between nodes and a high CC when
compared to a random graph. For all megaregions,
we notice the high average CC values ranging between
0.4 and 0.6. Therefore, our networks are expected to
carry a small-world property, where the network hubs
effectively shrink the distances between nodes as they
become more pronounced. We utilize the trend of «
to quantify the extent of the scale-free property under
a small-world regime and the effect of hubs in the urban
network context.

Discussion As « which is the slope of the fitted
power-law line in Figure 7 decreases, there is a higher

probability of observing a hub city in the region,
hence a stronger scale-free property or hub effect.
Figure 8 shows a stable trend over time for each
megaregion, where the Northeast has the highest «,
followed by NorCal, SoCal, and Texas, respectively.
Dynamically, we observe that each megaregion has its
scaling parameter at a considerably stable rate from
1980 to 2020. It can be interpreted that as the region
expands in size, as reflected by the increase in the
number of nodes and edges, the strength of the scale-free
property is preserved. Therefore, the network topology
and characteristics of the megaregions of interest are
maintained despite their geographical differences over
time.

The Northeast has the weakest effect of the
scale-free property, where the loss of a hub is most
destructive to the network cohesion. A decrease
in a from 5.673 in 1980 to 5.583 in 2020 has a
negligible effect on the shrinkage of the network’s
average distance. Following the Northeast, NorCal
has the second highest o values over decades. As
we reference back to Figure 7, we notice that both
megaregions have evenly distributed curves contributed
by nodes with comparable degrees, but NorCal’s
network is proven to be more resilient to the loss of
hub than the Northeast. Despite their similar geographic
characteristics, NorCal’s hubs are able to improve
interconnections and increase proximity between places
as the network size expands, as outlined in Section
3.2. This supports the competitiveness of NorCal
hubs in facilitating activities and information effectively
across the megaregion. The lowest values of Texas’s «
support the claim of a higher proportion of high-degree
nodes. The distribution tail at node degree between 30
and 45 of Texas indicates multiple highly connected
places, whereas SoCal only has one sole candidate,
Los Angeles. This explains the higher slope, weaker
scale-free property, and higher average path length of
SoCal in comparison to Texas.

For the four megaregions of interest, including the
Northeast, Texas, NorCal, and SoCal, we discover
that the size of the network plays an important role
in urban expansion, influencing the level of network
connectivity. We find that the linear, vertical stretching
of both the Northeast and NorCal regions impacts their
network connectivity. Specifically, the Northeast region
is more vulnerable to network disconnection in the
event of a hub loss. Compared to SoCal, Texas has
a higher probability of encountering a hub, but the
expected proximity between places does not materialize
effectively as reflected by an increase in the average path
length and a decrease in the average CC, conflicting
with the small-world property. To optimize these
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large megaregions, we recommend adopting a strategic
expansion pattern that leverages well-established areas
to improve average connectivity, reduce average path
length, and improve the effectiveness of network hubs.
In urban expansion planning efforts, it is crucial
to consider geographic characteristics that align with
the strengths of each region, ultimately boosting the
effectiveness of the hub functions and strengthening
network resilience.

4. Conclusion

This paper presents a GIS-based network analysis
framework for megaregion research. This framework
models geo-shaped polygon data of census places as
the PGAN. By integrating descriptive network analysis
and degree distribution analysis, we aim to understand
spatial connections, geospatial expansion, and hub
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Figure 9: The power-law regimes based on the increase
of average path length as network size increases

effects during the urbanization process. The proposed
framework is demonstrated using a case study that
includes representative megaregions in the United
States. In the case study, geographic connectivity and
interdependence of places are captured as networks,
generated by PGAN modeling. The descriptive
network analysis and degree distribution analysis
quantitatively —assess geospatial interconnections,
geographic characteristics, and proximity between
places. This study offers a new approach to megaregion
analysis and generates new knowledge on megaregion
expansion, which is beneficial for urban planning and
policy making. Based on the distinct characteristics and
dynamics of the Northeast, Texas, NorCal, and SoCal,
several policy recommendations can be proposed. First,
to strengthen connectivity, investments in transportation
infrastructure such as road networks and railways
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should be prioritized in the Northeast and Texas
regions to improve connectivity and reduce average
distance between places. Second, to enhance resilience,
maintaining and strengthening existing connectivity
in NorCal and SoCal is crucial. Third, in SoCal,
where there is heavy reliance on Los Angeles as a
major hub, policies should promote the development
of additional hubs to distribute functions and reduce
vulnerability. Incentives for businesses and industries
to establish operations in other cities can contribute
to this goal. Lastly, as new hub cities such as Austin,
TX and Bakersfield, CA emerge, monitoring and
support should be provided through investments in
infrastructure, economic development, and connectivity
to facilitate their integration into the network. These
policy recommendations aim to foster connectivity,
resilience, and balanced growth in the urban networks
of the respective megaregions. In future work, we aim
to apply the framework to all the megaregions within
the United States. Our goal is not only to uncover trends
and gain a deeper geospatial network understanding,
but also to derive insightful policy recommendations
that can inform and benefit practice.
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