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ABSTRACT

The optimal allocation of electric vehicle (EV) charging re-
sources is crucial for advancing national electrification and de-
carbonization plans, prompting extensive research into efficient
placement strategies for EV charging infrastructure. While many
aim to maximize the coverage of charging resources based on
demand, typical approaches adopt uniform grid cells to divide
the region of interest for analysis. However, these methods of-
ten overlook spillover effects (i.e., dependencies) between sub-
regions, where high charging demand in one sub-region spreads
to surrounding areas. To address this limitation, we develop
a novel bipartite network-based design decision-making frame-
work for optimal placement and allocation of EV charging sta-
tions, including the number and type of chargers. The proposed
framework introduces two key innovations. First, it includes
a new partition method integrating Voronoi diagrams with K-
means clustering to mitigate the spillover effects inherent in grid-
based methods. This method aggregates charging demand by ac-
counting for points of interest (POIs) and traffic flow through
K-means clustering and then partitions the region of interest
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into Voronoi cells based on the clustered centroids. Second, the
framework adopts the choice modeling philosophy and uses a bi-
partite network model to represent “customer” nodes (i.e., EV
drivers in a service zone defined by a Voronoi cell) and “prod-
uct” nodes (i.e., charging stations). A link is established between
a station and its corresponding service zone if it lies within the
zone. For service zones without a station, links are created to
the nearest station based on the shortest driving distance calcu-
lated from the real-world transportation network, incorporating
driving costs. With such a choice modeling method, the charging
demand can be explicitly represented to support optimal resource
allocation, including the location of stations and the number
and type of chargers. To demonstrate and validate the proposed
framework, we formulate an optimization problem to maximize
the coverage of public EV charging resources in Austin, Texas,
while minimizing the driving cost and total expenses, subject to
budget and power grid constraints.

Keywords: Electric vehicles, resource allocation, bipartite
network, Voronoi-K-means partitioning.
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1 INTRODUCTION

The global transition from conventional automobiles to elec-
tric vehicles (EVs) is a critical strategy for achieving the climate
goal of net-zero emissions by 2050 [[1]. This shift is evident in
the concerted efforts of governments and industries worldwide.
In 2022, plug-in EVs accounted for 14% of the global light-duty
vehicle market, with China and Europe leading at 29% and 21%,
respectively [2]]. By 2024, plug-in EVs constituted 9.9% of all
passenger vehicle sales, and over 6.4 million plug-in EVs had
been sold in the U.S. by January 2025 [3]. Projections suggest
that new policies and industry targets could increase the market
share of plug-in EVs to between 48% and 61% of the U.S. light-
duty vehicle sector by 2030 [2]].

To support this growth, the 2030 National Charging Net-
work report estimates that the U.S. will require 182,000 DC
fast chargers (each with a minimum capacity of 150 kW) and
1,067,000 Level 2 public chargers by 2030, based on a projected
33 million EVs on the road [2]. This infrastructure expansion is
expected to necessitate a cumulative capital investment of 31-55
billion USD in publicly accessible charging infrastructure. As of
now, data from the Station Locator indicates that only 13.3% of
the required DC fast chargers and 13.4% of the necessary Level
2 charging stations are operational, highlighting the significant
gap that remains to be addressed [4].

Planning for EV charging infrastructure is critical to allevi-
ating range anxiety among EV drivers and promoting widespread
adoption of EVs. However, the efficient deployment of such in-
frastructure is influenced by numerous factors, including user
demand and charging behaviors [5}/6]], location and accessibil-
ity [[7], cost and funding considerations [8| 9], grid capacity
and stability [10]], available charging technologies (e.g., charger
types) [11], and regulatory policies governing installation, main-
tenance, and operation [12]]. To address the significant gap be-
tween charging resource demand and supply, and to better un-
derstand how these factors influence infrastructure planning, ex-
tensive research has been conducted. For instance, Wang et al.
proposed a heterogeneous spatial-temporal graph convolutional
network for short-term EV charging demand prediction, leverag-
ing point-of-interest (POI) data to design a region-specific pre-
diction module [[6]. Their model was validated using real-world
GPS trajectory data. In another work, Nicholas provided de-
tailed estimates of capital costs for EV charging infrastructure
across 100 major U.S. metropolitan areas, underscoring the need
for substantial investment to support EV growth while identify-
ing gaps in cost estimates, such as fast-charging corridors and
project management [9]. Additionally, Acharige et al. conducted
a comprehensive review of EV charging technologies, interna-
tional standards, charging station architectures, and power con-
verter configurations [[11]].

To further synthesize existing research, we examined several
recent review articles that approach EV charging infrastructure
planning from diverse perspectives. For example, Anadon and

Sumper focused on public EV charging infrastructure planning,
organizing the literature around the perspectives and objectives
of key stakeholders in the EV charging value chain, including
EV users, charging operators, service providers, and power sys-
tem infrastructure [[13]]. In another study, Ullah et al. categorized
optimal charging station placement approaches into five method-
ologies: 1) flow-based approaches, which optimize resource al-
location for intercity stations by managing electricity, informa-
tion, and payment flows; 2) node-based approaches, which divide
networks into nodes for real-time monitoring, suitable for in-
tracity stations; 3) path-based approaches, which optimize charg-
ing along planned vehicle routes to ensure accessibility without
overloading infrastructure; 4) tour-based approaches, which cre-
ate itineraries with charging stops for random or round trips; and
5) network equilibrium approaches, which balance supply and
demand by integrating power and transport networks for optimal
station placement [[14].

Building on the insights from the literature review, it is ev-
ident that optimal EV charging infrastructure planning requires
dual foci: accurate regional charging demand prediction and op-
timal placement and allocation of charging resources. An ideal
framework would integrate these two aspects while accounting
for key influencing factors such as user behavior, grid capacity,
cost constraints, and regulatory policies. However, despite sig-
nificant advances in the field, a critical limitation is that existing
approaches rely on uniform grid-based methods to partition re-
gions of interest for analysis [5,/6L/15]. While these methods pro-
vide a structured approach, they overlook the interdependencies
between sub-regions, such as the spillover effects, where high
charging demand in one area can significantly influence adjacent
regions. This limitation results in suboptimal resource allocation.
Consequently, current methods fail to provide a holistic solution
that addresses the interconnected nature of EV charging demand,
hindering the development of efficient and scalable charging net-
works.

To address these challenges, we propose a novel bipartite
network-based framework for optimal placement and allocation
of EV charging stations, including the determination of charger
types and quantities. Our framework overcomes the limita-
tions of traditional grid-based methods and has two key innova-
tions. First, we introduce a new partition method that integrates
Voronoi diagrams [[16] with weighted K-means clustering [[17].
Unlike uniform grid-based approaches, this method accounts for
the varying influence of spatially relevant factors, such as points
of interest (POIs) and traffic flow patterns, on charging behaviors.
By weighting these factors, the method aggregates the charg-
ing demand through weighted K-means clustering. The result-
ing clusters are used to generate Voronoi cells, which partition
the region into service zones that more accurately reflect real-
world demand distribution and mitigate spillover effects between
sub-regions. As a result, this approach enables better capture of
spatial heterogeneity in charging demand, thus enabling a more

Copyright © 2025 by ASME



efficient resource allocation.

Second, our framework adopts a choice modeling philoso-
phy [18},/19], leveraging a bipartite network structure to model
the interactions between EV drivers and charging stations. In this
network, “customer” nodes represent EV drivers within a ser-
vice zone defined by a Voronoi cell, while “product” nodes rep-
resent charging stations. Links are established between stations
and their corresponding service zones if they are located within
the zone. For service zones without a station, links are created
to the nearest station based on the shortest driving distance de-
rived from the real-world transportation network, incorporating
considerations of driving costs. This bipartite network represen-
tation not only explicitly captures charging demand but also ac-
counts for resource dependencies between sub-regions, thus pro-
viding a more holistic solution to efficient and equitable infras-
tructure planning. To validate the applicability of our proposed
framework, we conduct a case study on public charging stations
in Austin, Texas, formulating an optimization problem that max-
imizes the coverage of EV charging resources while minimizing
total expenses and driving cost, subject to budget and power grid
constraints.

The remainder of the paper is organized as follows. Sec-
tion [2] introduces the proposed bipartite network-based frame-
work for EV charging station planning. Section [3| presents the
details of the case study. Section []discusses the limitations of
this work. Finally, Section [5] concludes the paper with closing
remarks and outlines potential directions for future research.

2 RESEARCH FRAMEWORK

Figure[I|provides an overview of the bipartite network-based
design decision-making framework for the optimal placement
and allocation of EV charging stations. The framework consists
of three key steps: 1) partitioning the region of interest into local
service zones with similar charging demand, 2) representing the
charging demand-supply relationship as a bipartite network, and
3) formulating an optimization problem to optimize the design of
the EV charging system. The following subsections elaborate on
each step in detail.

2.1 STEP 1: CHARGING DEMAND PARTITION

In Step 1, our objective is to partition the region of interest
into local service zones, with each zone having similar charging
demand. This step is critical to efficiently allocate local charg-
ing demands to charging resources (stations), thus optimizing the
operation of the entire charging system. In addition, this process
identifies candidate locations for the establishment of new sta-
tions. To achieve this, we propose a partitioning method that
integrates Voronoi diagrams and K-means clustering. Figure [2]
illustrates the flowchart of the proposed method using a toy ex-
ample. The flowchart consists of two major parts. The first part,
represented by the upper row of the flowchart, identifies the im-

pact of different featured locations on charging demand. In this
example, we first apply K-means clustering to group locations,
including existing EV charging stations and two types of point-
of-interests (POIs), such as cafes and theaters, based solely on
their geographic coordinates. Locations with closer distances
are grouped into clusters, and the centroids of these clusters are
identified [20]. These centroids are then used as seed points to
partition the region using a Voronoi diagram. By definition, a
Voronoi cell consists of all points in the region that are closer to
its seed point than any other seed point [|16]. In the context of
EV charging, stations within a Voronoi cell naturally serve EV
drivers visiting POIs within the same zone, assuming distance is
the primary consideration. However, existing studies have shown
that different POIs and local traffic flow have varying levels of
influence on charging demand [21}22]]. To account for this, we
formulate a regression model to analyze and rank the importance
of these factors.

In the regression model, the dependent variable is the num-
ber of EVs charged in each service zone over a specific period
(e.g., a day or week). The independent variables include the
number of charging stations, different POIs, and traffic flow (e.g.,
the number of cars captured by traffic cameras, if data is avail-
able) within each service zone. To ensure comparability, all in-
dependent variables are normalized. The regression model esti-
mates the coefficients for each factor, allowing us to rank their
contributions to charging demand. Factors with higher contribu-
tions are assigned larger weights, reflecting their relative impor-
tance.

Once the weights are determined for the different featured
locations, we proceed to the second part of the flowchart, cor-
responding to the bottom row of Figure 2] In this part, we up-
date the Voronoi partition by incorporating these weights. For
instance, in the toy example, assuming the regression model as-
signs weights of 3, 2, and 1 to EV charging stations, theaters, and
cafes, respectively. We then apply weighted K-means clustering
to regroup the locations and recalculate the centroids based on
these weights. Using the updated centroids as seed points, we
re-partition the region. Returning to the toy example, the new
centroid of the upper-left service zone is “dragged” closer to the
charging station due to its higher weight compared to the cafe.
Consequently, the boundary of the service zone is adjusted ac-
cordingly. Through regression analysis and weighted clustering,
the method partitions the region into service zones with simi-
lar charging demand. Zones in denser, high-demand areas are
smaller and more granular, while lower-demand areas will be
partitioned into larger zones. By incorporating the influence of
key factors such as POIs and traffic flow, the weighted cluster-
ing ensures that each zone accurately reflects the characteristics
of local demand. This approach goes beyond geographic proxim-
ity, creating service zones more aligned with underlying charging
demand patterns.
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22 STEP 2: NETWORK REPRESENTATION OF
CHARGING DEMAND-RESOURCES ALIGNMENT

In this step, we construct a bipartite network to represent
charging demand and resources. As outlined in Algorithm [T} the
process involves two critical sub-steps. First, we define two types
of nodes. Node type “A” represents the centroids of partitioned
service zones, with geographic coordinates and service zone IDs
as node attributes. These centroids, representing localized ag-
gregations of charging demand, are treated as “customers” in ac-
cordance with choice modeling principles. Node type ”B” repre-
sents existing EV charging stations, with geographic coordinates
as node attributes. These stations, which provide charging ser-
vices, are treated as “products” in the choice model.

The second sub-step involves constructing links based on
two key assumptions. The first assumption is that if a charg-
ing station is located within a service zone, it is considered the
natural choice for EV drivers within that zone to charge their
vehicles. Consequently, we generate a link between the station
and the centroid of the service zone, assigning it a driving effort
of zero (i.e., link weight = 0). The second assumption is that if
a service zone does not have any charging stations, EV drivers
within that zone will seek charging resources from nearby sta-
tions. Therefore, we generate links between the centroid of the
zone and the top k nearest stations, with the link weight equal
to the driving distance. These nearest stations and shortest driv-
ing distances are identified and calculated using Dijkstra’s algo-
rithm [23]], based on the real-world road network. This approach
ensures a realistic representation of the charging behavior and
resource allocation.

2.3 STEP 3: EVCHARGING SYSTEM OPTIMIZATION
In Step 3, we formulate an optimization problem to opti-
mize the placement and allocation of EV charging stations based
on the bipartite network model. As illustrated in Figure|l| three
types of design decisions are considered: 1) identifying which
existing stations require expansion, 2) selecting appropriate loca-
tions from a set S, of potential new charging stations (derived
from centroid locations of service zones without stations), and 3)
determining charger types and quantities for both expanded and
new stations. The optimization objectives include minimizing to-
tal expenses, minimizing total driving costs, and maximizing the
coverage of charging demand. Additionally, two constraints are
imposed: 1) the total expenses must remain within a given bud-
get, and 2) the design decisions must adhere to power limitations
to prevent overloading the connected power grid. For simplifi-
cation, in this work, we assign a fixed power limitation value to
each station. However, our future work aims to incorporate the
real power grid structure to ensure that the expanded and new
stations comply with the power limitations at their connection
points. Next, we provide further details on the formulation of
the three objectives and the solution process for the optimization

Algorithm 1 Build Bipartite Graph

Input: Polygon set O, centroid set U for partitioned service
zones, existing EV charging station set S, road network G,
and integer k

Output: Bipartite graph H

1: H < new graph()
> Add nodes
2: for each idx in U do
3: H.add_node((“A”,  idx),
poly_id=V [idx])

coordinate=(lat, lon),

4: end for
5: for each idx in S do
6: H.add_node((“B”, idx), coordinate=(lat, lon))
7: end for
> Construct edges
8: for each A_idx in H.nodes[“A”’] do
9: poly_idx=A _idx[*“poly_id”]

10: poly=0|poly_idx]
11: sub_s=[H .nodes[“B”][“coordinate”] in poly]
12: if sub_s # None then

13: for each B_idx in sub_s do

14: H .add_edge(A_idx, B_idx, distance=0)

15: end for

16: else

17: Dist ={}

18: for each B_idx in H.nodes[“B”’] do

19: dist = Caculate_Driving_Distance(G,
H .nodes[A_idx], H.nodes[B_idx])

20: Dist[“B_idx"]=dist

21: end for

22: sorted_Dist=sorted(Dist, key=lambda x: x[1], re-
verse=False)

23: top_k_dist = sorted _Dist[:k]

24: for b_idx,val in top_k_dist do

25: H .add_edge(A_idx, b_idx, distance=val)

26: end for

27: end if

28: end for

29: return H

problem.

2.4 TOTAL EXPENSES

In this work, we focus primarily on public charging stations.
Following [9]], the installation costs for chargers include hard-
ware costs and associated expenses such as labor, materials, per-
mits, and taxes, which vary with the number of chargers installed.
For example, the costs of installing g; number of Level 2 charg-
ers with 6.6 kW|'|and ¢, number of DC 50 kW chargers in public

I'This is the price outside California. Copyrigh t © 2025 by ASME



and workplace stations are provided in Equation (T) and Equa-
tion (2, respectively,

(31274-2836)q; ifq1 =1
(3127 +3020)q; ifgq; =2

CLevel2 = . (1)
(3127+3090)q1 if3<q1 <5
(3127+42305)q; if 6 < g1 < 100,
28401 4-45506)q, if go =1
28401 +36235)q, if g =2

CDC50 = 2

( )

( )

(28401 +26964)q, if3<q, <5
(28401 +17692)q>  if 6 < g2 < 50.

These costs are reported in 2019, with future costs assumed to
decline at a rate of 3% annually. Assuming we consider only
Level 2 and DC 50 kW chargers and do not differentiate between
station expansion and new station establishment (i.e., the cost of
installing two Level 2 chargers is the same for both scenarios),
the total expenses can be calculated using Equation (3)),

C= <Zc,»+ ) Cj> (1—3%(Year—2019)).  (3)

€S JESnew

As previously mentioned, S represents the set of existing EV
charging stations, and S,., denotes the set of candidate cen-
troids of those service zones without EV charging stations and
are ready for establishing new stations. The expense of expand-
ing an existing station i is given by C; = crever2(¢}) + cncso(gh)s
where ¢ and g, are the number of Level 2 and DC 50 kW charg-
ers added to station i, respectively. Similarly, C; is the expense
of establishing a new station j, and C; = CLevei2(q]) + cpeso(qh),
where q{ and qé represent the number of Level 2 and DC 50 kW
chargers installed at station j. For a station in S or Sy, if both
q1 and g, are zero, this indicates that the existing station will
not be expanded or the candidate station will not be built. The
variable Year corresponds to a future year of interest after 2019.
Equation (3) defines our first objective function, which aims to
minimize the total cost C by optimizing the integer variables ¢/,

45, q, and g3.

2.5 DRIVING COST AND COVERAGE EFFICIENCY OF
CHARGING DEMAND

Figure [3] presents an illustrative example to demonstrate

the calculation of driving costs and coverage efficiency. The
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FIGURE 3: A toy example to illustrate the calculation of driving
cost and coverage efficiency.

bipartite network generated by Algorithm [I] is represented as
H = (U,S,E,W), where U and S denote the sets of service zone
nodes and charging station nodes, respectively. E is the set of
links and W stores the corresponding link weights. We assume a
represents the charging demand (the approximate number of EVs
requiring charging within a specific period, e.g., a day or week)
for each service zone, and b; represents the charging capacity of
station s; (the approximate total number of EVs charged during
the same period) determined by the type and number of charg-
ers it hosts. For each service zone node u;, its charging demand
is evenly divided by its degree deg(u;) and assigned to the con-
nected stations. For example, in Figure 3] the degree of service
zone u3 is 3, so its charging demand is divided into three equal
parts, %, and assigned to stations s1, 53, and s3. The total assigned
charging demand for any station s; is calculated as:

y * )

assignedDemand(s;) = .
uj:(uj,s,-)EE deg(uj)

If assignedDemand(s;) < b;, station s; covers all assigned de-

mand. Otherwise, it covers only a fraction of the demand from
. . b;

each link (u;,s;), proportional to aignedDemand(sy) - 1hus, the de-

mand covered through link (u;,s;) is:

a % b,'
deg(u;)

®

covered, . ;. = . .
I assignedDemand(s;)
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The total driving cost is then calculated as:

D= Z coveredy; s, - Wuj s, (6)

(uj75i>

where w5, is the weight of link (uj,si), representing the driving
distance between zone u; and station s;. This equation reflects the
total driving distance for all coveredy; 5; EVs transferring through
link (uj,s;). Next, regarding the coverage efficiency, the total
covered demand for all zones in U is:

COVERED= Y} )

uj€U s;:(uj,s;)€E

coveredum . @)

The total unmet demand is calculated as:

0=} X

MjGUs,-:(uj.,s,-)eE

(a— covereduﬁsl.). (8)

Equations (6)) and (8) define our second and third objective func-
tions, aiming to minimize the total driving cost D and unmet
charging demand Q, respectively. Since both D and Q depend
on the structure of network H, their minimization is directly in-
fluenced by the number of Level 2 and DC 50 kW chargers ex-
panded at existing stations or installed at new stations.

2.6 BUDGET AND POWER CONSTRAINTS

In this work, we incorporate two constraints. The first con-
straint is the budget Cp,qg.;. We penalize any total cost exceeding
the budget, defined as:

0 if C <
Cpenatry = { o ©

C— Cbudgel if C > Chudget .

The second constraint relates to the power limitation of each sta-
tion. According to [9], a typical station has a site power limit
of Ppreshola = 2.5 megawatts of power. To ensure compliance
with this constraint, we penalize any power usage exceeding the
threshold for each station, and the penalty is defined as:

Ppenalty = Z (PS,' - Pthreshold)~ (10)

s;i€S

where P, is the total power supported by the station s;, and it is
a function of the design variables g1, ¢ as below:

1D

6.6q1 + 50>

B P, +6.6q1+50q, s; is existing station
i s; is new station

where P., represents the total power already available at the ex-
isting station s;, which can be determined from existing data.

2.7 SOLVING THE OPTIMIZATION PROBLEM

In this work, the computation of driving costs and cover-
age efficiency relies heavily on the developed bipartite network
models. Consequently, the search for an optimal solution is con-
ducted using metaheuristic approaches. Specifically, we employ
a genetic algorithm (GA) [24] to solve the optimization problem.
As outlined in Algorithm (3] the hyperparameters include “pop-
Size”, which defines the population size in each iteration; “max-
iter”, which specifies the maximum number of generations for
the GA search; and “run”, which determines the maximum num-
ber of consecutive generations without improvement in the best
objective value (fitness), triggering the termination of the search.
The design variable vector Q is a 1D integer vector encoding the
number of Level 2 and DC 50 kW chargers installed across all
existing stations (total M) and candidate stations (total N). It
is formatted as [g],q3, ...}, g, g L gt b,
where ¢'™ and ¢5'** represent the predefined maximum number
of Level 2 and DC 50 kW chargers allowed per station, respec-
tively. The fitness function, which depends on Q, is computed
using Algorithm [2] Within this algorithm, the three objective
functions, C, D, and Q, are normalized using max-min normal-
ization to ensure that they operate on similar scales, thus avoid-
ing bias toward any single objective, but can be adjusted based on
needs. In contrast, the penalty terms Cpepgry and Ppengiry are re-
tained at their original scales to impose significant penalties for
violating budget and power constraints, ensuring that solutions
adhere to these critical limitations.

3 CASE STUDY

In this section, we present a case study of public EV charg-
ing stations in Austin, Texas, to demonstrate the research frame-
work introduced in Section 2l

3.1 DATA SOURCE

Multiple datasets were used to support the analysis and cal-
culations in this study. These datasets were preprocessed to en-
sure they fall within the region of our interest, i.e., city Austin
defined by the geographical boundaries: [min_lat, max_lat]

Copyright © 2025 by ASME



Algorithm 2 Fitness Function

Input: Design variable vector Q, polygon set O, centroid set U
for partitioned service zones, existing EV charging station
set S, road network G, and integer k

Output: Fitness value Valfiess

. Given Q, calculate C, Cpenairy and Ppenairy

: Given Q, call Algorithm[I]to get the structure of network H

: Given Q and H, calculate D and Q

: Normalize C, D, and Q to get Cyorms Dnorm, and Qpnorm

Valfitness = Chorm + Dnorm + Onorm + Cpenalty + Ppenalty

: return Val fipegs

Algorithm 3 Optimal EV Charging Infrastructure Planning

Input: Polygon set O, centroid set U for partitioned service
zones, existing EV charging station set S, road network G,
and integer k

Output: Optimal solution for design variable vector Q

: GA (type = integer,

. fitness(Q),

max = [¢], ¢}

popSize, maxiter, run)

: return Solution of Q

aX]
s

QaoE s

= [30.0255, 30.6376] and [min_lon, max_lon] = [-98.1821, -
97.3755]. Table|l|summarizes the preprocessed data, while Fig-
urefd]illustrates the geographical distribution of EV charging sta-
tions, POIs, and traffic cameras in the Austin area.

3.2 CHARGE DEMAND PARTITION

Following the proposed framework, we first partition the re-
gion based on the geo-locations of all EV charging stations, six
types of POls, and traffic cameras. The number of service zones
is set to 200. The resulting partition is shown in Figure[5a] Next,
we conduct regression analysis to assess the contributions of dif-
ferent location types to charging demand. In this case study, the
dependent variable is the daily number of EVs charged at stations
within each service zone, representing local charging demand.
The independent variables include the number of different POIs
and the average traffic flow in each zone. Notably, the number
of existing EV charging stations in a zone exhibits a high corre-
lation with charging demand (> 0.8), and so does the number of
theaters (> 0.7). To avoid multicollinearity, we rank existing EV
charging stations as the top contributor to local charging demand.
The regression results for the remaining factors are provided in
Table 21

The coefficient estimates suggest that theater has a strong
positive relationship with EV charging demand (coefficient =
503.53, p =0.001). Shopping malls also show a statistically sig-
nificant positive effect (coefficient = 266.40, p = 0.018), though
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FIGURE 4: Geographical distribution of EV charging stations,
POlIs, and traffic cameras in Austin, Texas areas.

slightly smaller in magnitude. Meanwhile, gas stations exhibit a
negative coefficient (-289.36) that is close to traditional signifi-
cance (p = 0.061). Other variables, such as traffic flow, cafes,
schools, and groceries, are not statistically significant. Based
on these findings, we rank and weight the featured locations as
shown in Table [3] Specifically: 1) EV charging stations are
ranked as the top correlated factor; 2) theaters and shopping
malls, which have significant positive effects, are ranked second
and third, respectively; 3) gas stations, despite their negative im-
pact, are ranked last; 4) factors with negligible effects are equally
ranked between shopping malls and gas stations.

Based on the weights provided in Table [3| we repartitioned
the study region into 200 new service zones, as shown in Fig-
ure [5b} In Figure [5a] the centroids are more uniformly dis-
tributed, resulting in relatively evenly sized local service zones
across the region. In contrast, Figure [5b|shows a higher concen-
tration of centroids, representing aggregated charging demands,
in the central urban area, with fewer centroids in peripheral re-
gions. This indicates that smaller partitioned service zones in
the city center can accommodate comparable charging demand
to larger service zones in outlying areas. This pattern reflects the
influence of high-impact factors, such as theaters and shopping
malls, which are more densely located in urban cores, leading to
a demand-driven allocation of service zones. Again, the results
highlight the importance of incorporating weighted factors into
partitioning methods to better align infrastructure planning with
spatial variations in charging demand.
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TABLE 1: Summary of datasets used in the case study

Dataset Name Format Size

Attribute being Used Source of Data

Public EV charging stations  Tabular 398 stations

Latitude, longitude, # Google Maps
of available chargers and
their powers # of EVs

charged in a day
POIs Tabular 1069 cafes, 295 gas stations, Latitude, longitude Google Maps
467 groceries, 225 schools,
379 shopping malls, 254
theaters
Traffic flow Tabular 922 traffic camera locations  Latitude, longitude, # of Texas Department of

cars recorded by camera  Transportation

Austin EV registration data ~ Tabular 280,686 EVs across 2017 to  ZIP code, registration Atlas EV Hub!
2024 date
Austin roadway network Line Shape- - - Texas Department of
files Transportation

I'Atlas EV Hub Link

TABLE 2: Regression results: the impact of traffic flow, POIs
on EV charging demand!

Coef Std err t p >t

Const 20.4080 40.253  0.507 0.614
Avg traffic flow  129.3872 117.843 1.098  0.275
Cafe 165.8253  139.349 1.190  0.237
School 0.6702 148.991 0.004  0.996
Theater 503.5305 149.573 3.366  0.001

-289.3638
266.3993
41.1328

152.465 -1.898 0.061
110.148 2.419 0.018
156.131 0.263  0.793

1 All data used to estimate this regression model is normalized using min-max
normalization.

Gas station
Shopping mall

Grocery

3.3 BIPARTITE NETWORK MODELING

After partitioning the service zones, we input the polygon
and centroid sets of the 200 service zones, along with the set of
398 existing public EV charging stations, into Algorithm |1 to
simulate the charging demand-supply relationship based on the
assumptions outlined in Section[2.2] For zones without charging
stations, we connect them to their nearest station (i.e., k = 1 in
Algorithm [T)). The resulting network representation is shown in
Figure[6] where red circle nodes represent service zone centroids
and blue square nodes denote EV charging stations. The network
contains 398 links with a weight of zero and 105 links with a

TABLE 3: Ranking and weighting impacts of different featured
locations in charging demand

Featured locations Rank Weight

EV charging station 1 5
Theater
Shopping mall
Theater

Avg traffic flow
Grocery

4
3
2
2
2
School 2

S O O N N TS )

Gas station 1

weight greater than zero (indicating zones without charging sta-
tions, connected to nearby stations with driving distance as the
link weight). In the network model, these 105 zones have a de-
gree of 1 and are represented by weighted green dashed links in
the plot. Geographically, most of these 105 zones are located in
peripheral regions of the city. As the distance from the city center
increases, EV drivers in these zones must travel longer to access
charging resources in nearby regions. This highlights the uneven
distribution of the charging infrastructure, particularly the severe
scarcity of resources in rural areas.
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(b) Partitioned local service zones and their centroids, considering geograph-
ical locations of EV charging stations, POIs, and traffic cameras, and their
varied contributions to charging demand

FIGURE 5: Partitioned service zones.

3.4 PUBLIC EV CHARGING SYSTEM OPTIMIZATION

3.4.1 The scheme of test cases In this section, we
follow the methodology outlined in Section [2.3]to formulate and
solve the optimization problem for optimal planning of the pub-
lic EV charging infrastructure in the Austin area, ensuring that
newly planned resources can support the projected increase in
daily charging demand for the next year. We begin by clarify-
ing several assumptions. First, we use the recorded total number
of charged EVs at existing stations in a single day (10,731) to
represent the current year’s daily charging demand, evenly dis-
tributed across local service zones (approximately 54 EVs per

10
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FIGURE 6: Bipartite network representation of charging
demand-resources alignment in Austin area.

zone). Next, we calculate the average growth rate of registered
EVs in the Austin area from 2017 to 2024, which is 175.73%.
Based on this, the projected daily charging demand for the next
year is approximately 149 EVs per zone. Second, since the
charging capacity b; of each station is critical for calculating both
driving costs and coverage efficiency, we develop a regression
model to estimate the number of EVs a station can charge daily
based on its total charger power. The results, provided in Table[d]
indicate that a Level 2 charger with 6.6 kW of power can charge
approximately 4 cars per day. Third, the power constraint for
this study is set at 4000 kW, corresponding to the maximum total
power observed among existing EV charging stations. However,
real-world grid constraints vary by location, and future work will
incorporate transformer capacity data for a more accurate repre-
sentation. Finally, to explore the impact of different design con-
figurations, we examine three test cases, as summarized in Ta-
ble[5] These cases vary in terms of budget constraints and charger
types, enabling us to evaluate the trade-offs and effectiveness of
various planning approaches under realistic conditions.

3.4.2 Setup for solving the test cases In this case
study, we consider 398 existing charging stations and 105 zones
without charging stations, using the centroids of these zones as
candidate locations for new stations. Due to computational re-
source limitations, we restrict each test case to a single charger
type. Consequently, the design variable vector Q has a length of
503 for all test cases. Additionally, we impose a constraint lim-
iting the total number of chargers installed across existing and
new stations to 10 for each charger type. For the genetic algo-
rithm (GA) hyperparameters, we set the population size to 50,
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TABLE 4: Regression results: the relation between the sum of
EV charger powers in a station and the number of EVs that
station can charge in a day!

Coef  Std err t p> |t
Const 3.5845 0.093 38.512 < 0.001
Avg traffic flow 0.0187  0.001 18.644 < 0.0001

!: The model achieves an R-squared value of 0.43, indicating moderate ex-
planatory power but limited accuracy in predicting the number of charged EV's
based on power support. In future work, we will explore more advanced
modeling techniques and incorporate additional data sources to enhance the
model’s predictive performance.

TABLE 5: Scheme of test cases

Test case  Budget ($)' Charger type

Case One 1 Billion Level 2 (6.6 kW)

Case Two 1 Billion DC 50 kW
Case Three 0.1 Billion DC 50 kW

1+ In future work, we will consider DC 150 kW and DC 350
kW chargers as additional options. The $1 billion budget esti-
mate is based on a value higher than the cost of installing ten
DC 350 kW chargers across all 503 existing and candidate sta-
tions (approximately $0.8 billion). Similarly, the $0.1 billion
estimate is derived from a value lower than the cost of installing
ten DC 50 kW chargers across all stations (approximately $0.2
billion).

the mutation rate to 15% per generation, the maximum number
of generations to 100, and the stopping criterion to 20 consecu-
tive generations without improvement in the best objective value
(fitness).

3.4.3 RBResults The computation processes for Test
Cases One, Two, and Three terminate at 52, 72, and 100 gener-
ations, respectively, each exhibiting an evident converging trend.
The resulting placements of new chargers for both station expan-
sions and new station establishments are illustrated in Figure
(a)~(c). Comparing the three layouts reveals that, given suffi-
cient budget, Test Cases One and Two feature numerous large
orange circles and blue triangles distributed across the region,
indicating extensive expansion of existing stations and installa-
tion of new stations. Statistically, 87% and 84% of existing sta-
tions are expanded, while 97% and 96% of candidate stations
are constructed in Test Cases One and Two, respectively. The
key differences between Test Cases One and Two include: (1)
Test Case One prioritizes expansion of stations in the downtown
area, as evidenced by the higher density of large orange circles
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within the red circle in Figure [7h compared to Figure[7p; and (2)
Test Case One establishes new large-sized stations more evenly
throughout the region, while Test Case Two shows a more clus-
tered distribution of large-sized new stations in the northern re-
gion, highlighted by the red square in Figure[7p. In contrast, Test
Case Three, with a significantly smaller budget, focuses more
on expanding existing stations rather than establishing new ones.
This results in an 83% expansion rate, comparable to Test Case
Two, and an 83% establishment rate for new stations. However,
the scale of expansion in Test Case Three is smaller than in the
other two cases, as highlighted by the red square in Figure [7k,
reflecting the constraints imposed by its limited budget.

In Figure [/ (e)~(g), we present the bipartite network repre-
sentations based on the placements of the three test cases. These
plots clearly visualize the alignment between charging demand
and resources. Both Test Case One and Two establish a suffi-
cient number of new charging stations to cover the majority of
rural regions’ charging demand, as indicated by the limited num-
ber of green links. However, they overlook a few remote rural
regions, evidenced by the thick green links in the upper left of
Test Case One’s plot and the lower right of Test Case Two’s plot.
In contrast, Test Case Three demonstrates a lower coverage ra-
tio for rural region charging demand, but establishes new stations
more evenly across rural areas, resulting in more green links with
smaller weights.

Finally, we compare the total expenses, unmet charging de-
mand, and driving costs across the three test cases. Test Case
One invests a moderate amount (approximately $12 million) but
serves the fewest EVs, leaving about 26,000 EVs’ charging de-
mand unmet (approximately 88% of the total daily demand).
This suggests that Level 2 chargers, even with moderate invest-
ment, are insufficient to fully meet the region’s needs. In con-
trast, Test Case Two spends around $104 million, meeting 4%
more charging demand than Case One and significantly reducing
the total driving distance to about 53,000 km, which is 34% of
Test Case One and 15% of Test Case Three. Test Case Three,
with less funding, invests nearly $95 million and meets 3% more
demand than Case One. However, its relatively sparse station de-
ployment results in significantly longer driving distances, high-
lighting the trade-offs imposed by a limited budget on charger
placement and coverage.

4 LIMITATION
This work has four key limitations, which are illustrated as
below:

1) The first limitation of this study is the exclusion of tempo-
ral effects in the research framework. Time factors could
significantly influence several aspects of the analysis. First,
different types of locations may affect the dwelling time of
EV drivers, thereby influencing charging duration. Incorpo-

Copyright © 2025 by ASME



. :Station for expansion A :Newly established station

(a) Charger Distribution (Test Case One)

. (AN \
(@ :station for expansion 4\ :Newly established station

(b) Charger Distribution (Test Case Two)

(A% ;_7<&\ \

. :Station for expansion A :Newly established station

(c) Charger Distribution (Test Case Three)

06 . 306 .
. . . .
N
N
N
30.5 N 30.5
-
. . . .
304 L 04 N
. .
- . -
2 . - 3 @y
i . 2
I 303 3303
LI o m
02 on 02 on
. .
.
. e . .
01 Link with 0 weight 01 Sue i umKwihOweish:
Link vith weight equal to driving dstance) L Link with weight (equal te driving distance)
® Partitioned service zone node - - . @ Parttioned service zone node
®  EV charging station node ® EV charging station node
931 -sso 979 -sus  -9n7  -are 915 914 981 -9s0 979  -91.8  -9.1  -976  -9i5  -974 sa1  -ss0 919 -sz8 77 s1e 915 974

Longitude

(e) Bipartite Network (Test Case One)

Longitude

(f) Bipartite Network (Test Case Two)

Longitude

(g) Bipartite Network (Test Case Three)

FIGURE 7: Optimal EV charger placements and bipartite network representations for the three test cases. Test Case One focuses on
expanding Level 2 (6.6 kW) chargers with a high budget, Test Case Two prioritizes DC 50 kW fast chargers for regional coverage with
a sufficient budget, and Test Case Three optimizes DC 50 kW charger placement under a limited budget. Larger shapes on the map

indicate a higher number of installed chargers.

$120,000,000
$100,000,000
$80,000,000

$60,000,000

Expense

$40,000,000
$20,000,000

S0

rating temporal considerations could improve the accuracy
of local service zone partitioning. Second, in calculating

$104,368,231

$12,359,472 I

Test Case One Test Case Two Test Case Three

(a) Total Expenses

$95,867,513

26500

26316

26000
2
',;'_(;' 25500
g 25172
g 25000 24926
=

24500

24000

Test Case One Test Case Two  Test Case Three

(b) Unmet Charging Demand

400000.00
350000.00
300000.00
;g 250000.00
\g 200000.00
g 150000.00
100000.00
50000.00
0.00

377280.00

159208.00

53773.00

Test Case One  Test Case Two Test Case Three

(c) Driving Cost

FIGURE 8: Comparison of objective function values across three test cases.

12

coverage efficiency, we aggregate daily charging records to
estimate the relationship between the number of charged ve-
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hicles and a station’s total power capacity. However, ignor-
ing the differing charging speeds of Level 2 and fast chargers
may underestimate the higher demand coverage efficiency of
fast chargers. Addressing these temporal factors is essential
for more accurate modeling and analysis.

2) The second limitation is that, as the first study to adopt
a choice modeling philosophy to model the alignment be-
tween local charging demand and resources using a bipartite
network, we still lack a deep understanding of the network
structure. For instance, it remains unclear which charg-
ing resource allocation strategies or specific local network
structures (e.g., building a supercharging station to connect
with many service zones or building small-scale charging
stations to connect with a few service zones) are most bene-
ficial for optimizing the overall charging system. This limits
the exploitation of the bipartite network model with more
advanced network modeling techniques, such as graph neu-
ral networks [25}/26]] and multidimensional network analy-
sis [27,/28]. Further advanced studies are necessary to fully
uncover the unique potential of this bipartite network-based
framework and its ability to guide the optimal design of EV
charging systems.

3) As outlined in Section[2.3] this study assumes a fixed power
limitation for each station. However, in practice, different
connection points in the power grid across the city may have
varying power capacities. Incorporating these variations is
critical to ensuring both the reliable operation of charging
stations and the stability of the power grid.

4) Another key limitation of this study is the low computational
efficiency in solving the optimization problem. The experi-
ments were conducted on a computer equipped with an 11th-
generation Intel Core CPU (19-11900, 2.50 GHz, 8 cores,
16 logical processors) and 32 GB of RAM. Using a parallel
computing strategy with 12 logical processors, the computa-
tional time for 100 generations was approximately 50 hours.
This inefficiency is largely due to the high dimensionality of
the design space, Q. A potential solution is to reformulate
the optimization problem as a sequential decision-making
process: first determining which existing stations to expand
and where to build new stations, followed by optimizing the
number of chargers to install. In future work, we will ex-
plore this approach and advanced parallel computing algo-
rithms tailored for high-dimensional optimization problems.

5 CONCLUSION

The study introduces a novel framework for optimizing the
placement and allocation of EV charging infrastructure, address-
ing the limitations of traditional grid-based methods that fail to
account for spillover effects between sub-regions. By integrat-
ing Voronoi diagrams with weighted K-means clustering, our ap-
proach partitions regions based on spatially relevant factors such

as POIs and traffic flow, ensuring a more accurate representa-
tion of local charging demand. Additionally, the use of a bi-
partite network model, grounded in choice modeling principles,
captures the alignment between charging demand and resources,
enabling an integrated approach to infrastructure planning. The
framework’s effectiveness is demonstrated through a case study
in Austin, Texas. We optimize charging resource allocation by
expanding existing stations, selecting new locations, and deter-
mining charger types and quantities while minimizing driving
costs and total expenses within budget and power constraints.

We examine three test cases, varying in budget and charger
types. The results highlight the framework’s ability to balance
spatial equity and demand-driven allocation. Test Case One
(Level 2, 6.6 kW chargers) and Test Case Two (DC 50 kW charg-
ers), with sufficient budgets, achieve extensive coverage in ur-
ban areas. In contrast, Test Case Three (DC 50 kW chargers),
with limited funding, focuses more on expanding existing sta-
tions rather than establishing new ones, revealing trade-offs in
resource allocation. Bipartite network visualizations underscore
the importance of addressing rural demand gaps and optimizing
station placement to reduce driving distances. Beyond EV charg-
ing, the framework’s flexibility suggests potential applicability to
other facility allocation and policy design problems, such as pub-
lic transportation hubs or renewable energy infrastructure, where
user demand and resource dependencies are critical.

In future work, we will mainly focus on five key directions:
1) incorporating temporal factors, such as variations in charging
behavior and speed differences between Level 2 and fast charg-
ers, to improve demand prediction and resource allocation effi-
ciency; 2) exploring the characteristics of the bipartite network
model to fully uncover its potential to guide the optimal design
of EV charging infrastructure; 3) integrating real-world power
grid constraints to enhance system reliability and stability; 4)
conducting sensitivity analysis for different configurations of the
proposed framework, such as evaluating how the number of par-
titioned service zones affects optimization outcomes, will pro-
vide valuable insights into the robustness and scalability of the
approach; 5) developing more efficient algorithms and parallel
computing techniques to address high-dimensional optimization
challenges. These efforts will refine the framework and expand
its applicability to EV charging infrastructure and other facility
allocation problems.
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