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ABSTRACT 
The socio-technical system (STS) is an important topic in 

Systems Engineering and Design Science. Its performance is not 

only affected by social aspects but also influenced by various 

technical factors. To understand the relationships and 

interactions among different components and subsystems in STS, 

many studies have been done either at individual agent level or 

at the system level, yet few studies were conducted at the local 

structural level in such systems. Motivated by this research gap, 

we developed an approach to analyzing STS based on the 

network motif theory. In this study, we apply this approach to 

three bike-sharing systems (BSS) to validate its feasibility. We 

focus on studying the size-3 motif, the most basic building block 

of complex networks, and its correlations to a BSS's rebalancing 

performance in three different cities, i.e., NYC, Chicago, and Los 

Angeles. This paper reaches three conclusions. First, both 

seasonal and city effects play a significant role in affecting BSS's 

network structure and its local motif characteristics. Second, the 

rebalancing issue, i.e., the imbalance between bike returns and 

rentals, happened at the local transit level can be different from 

that observed at the system level, and vice versa. Third, the 

average geographical distance of size-3 trip motifs follows 

strong patters correlated to the motif structures as well as the 

number of directed links in a motif. Compared with previous 

studies, these insights would be beneficial to guiding system 

designers in engineering STS, particularly from a bottom-up 

manner (e.g., using mechanisms or incentives), to achieve 

desired system-level performance. This study also provides an 

in-depth understanding of the relations between local system 

structures and system-level performance in an STS, therefore 

contributes to both the design theory of complex systems and the 

BSS research community from a new network motif-based 

perspective. 

 Keywords: Socio-technical System, Bike-sharing System, 

Network Motif, Complex Network, System Rebalance. 
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1. INTRODUCTION
1.1 STS and Network-based Research on STS 

The socio-technical system (STS) is one type of complex 

system that emerged from the interaction between social 

behavior and technological development. It is important because 

people, as one unpredictable factor in many complex systems, 

have a critical impact on the performance of a system. Thus, 

considering the social aspects can make system modeling more 

robust, and better guide engineering design. 

The term STS is originally proposed by Trist et al. in their 

paper discussing the interrelation between humans, machines, 

and the context in English coal mines[1]. In 1986, Cherns 

established a set of general socio-technical design principles to 

guide abstract STS development [2]. In 2000, Clegg extended 

those principles to three interrelated types: meta, content, and 

process, by considering new information technologies and 

management practices [3]. The authors also discussed the role of 

these principles in system design. To gain a better understanding 

of STS, more in-depth analyses are conducted. For example, 

human factors were analyzed by Carayon to evaluate their 

influence on complex systems in the areas of health care as well 

as computer security [4]. Gordon Baxter analyzed the obstacles 

of applying the socio-technical design method to complex 

system development and presents a newly STS engineering 

framework based on information systems, the group 

investigating work design, computer-based collaborative work, 

and cognitive engineering. [5]. 

In recent years, the complex network has been wildly used 

in STS studies because of its capability in capturing the inter-

connections between social entities and technological parts [6,7]. 

For example, Sha and Panchal [8] developed three different 

models based on complex networks to estimate the node-level 

behaviors and their impacts on the Internet, one of the most 

important STS in human society. The authors also analyzed 
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airlines’ decisions on city-pair route addition and deletion 

behaviors in the US domestic air transpiration systems by 

integrating discrete choice models and complex networks. Based 

on random utility theory, Sha and Panchal [9] developed a 

degree-based decision-centric (DBDC) network model that can 

produce a variety of network topologies representing different 

STS structures. A series of studies [10–15] based on stochastic 

network models (e.g., the Exponential Random Graph Model) 

were conducted in support of customer preferences modeling, 

choice behavior modeling, and customer-product interactions in 

complex vehicle-product market systems. 

1.2 BSS and Literature Review of BSS 

In this paper, we study a particular STS, called bike-sharing 

systems (BSS) – one emerging transportation system arising with 

the sharing economy. The technical aspect of BSS refers to the 

bikes and the station (or dock) system, while the social aspect 

relates to customers’ transit patterns as well as the social 

networks. The perspective of viewing BSS as a socio-technical 

complex network is unique and important, for it can provide 

network-based approaches to better understanding BSS. The 

history of bike-sharing project can be traced back to 1965 when 

the first generation of BSS emerged in Amsterdam. Although 

BSS experienced several updates, it did not gain much attention 

from academia until the explosion of data science and the rising 

sharing economy. According to the Scientometric Review [16], 

earlier articles mainly focus on some basic concepts, such as the 

policy, system safety, and system benefits, etc. ([17–20]). Since 

then BSS becomes a more interdisciplinary research subject, 

which covers environmental factors, population distribution, 

spatial characteristics, and social elements etc. 

Regarding to recent studies, Yi et al. [21] divided them into 

three categories: system rebalancing, system prediction, and 

system design and traffic pattern analysis, among which many 

mathematical models, algorithms, and optimization methods 

were developed. For example, a novel deep learning model was 

established by Lin et al. to predict station-level hourly demand 

in BSS [22]. The main contribution of this study is that their 

models take the potential correlations between stations into 

consideration. Besides demand prediction, many studies also aim 

to provide rebalancing strategies using both customer-oriented 

and truck-based methods [21][23,24]. For example, Yi et al. [21] 

developed a customer-oriented rebalancing strategy based on 

one-dimensional Random Walk with Two Absorption Walls 

(RWTAW) and The Largest The First (TLTF) algorithms. 

Thirdly, for system design and traffic patterns analysis, an 

integrated approach, which jointly considers station location and 

capacity, was proposed by Çelebi et al. [25] to guide the BSS 

design.  

Despite of extensive studies on BSS, most of them apply 

statistical models to analyze the performance of individual 

stations or local regional stations. No network-based approaches 

have yet been developed to analyze the performance of BSS from 

a systems engineering and design point of view. Lin et al. [22] 

analyzed the BSS network, but their research purpose was to 

verify the performance of the Data-driven Graph Filter (DDGF) 

model instead of studying the local-global structural interactions 

and performance correlations in BSS. The research gap also 

exists in the lack of knowledge in understanding the relationship 

between the local trip patterns and the system performance of 

BSS. 

The objective of this paper is to fill the research gap by 

developing an approach based on the theory of network motif to 

analyze the local-global relations in STS. It is expected the new 

knowledge obtained can help designers gain a better 

understanding of the local behaviors in an STS and more insights 

into how it can be engineered. We apply our approach on three 

BSSs, i.e. Metro Bike (Los Angeles and California metropolitan 

areas), Divvy Bike (Chicago), Citi Bike (New York City), each 

of which represents a particular developmental stage of BSS 

from underdeveloped, developing, and to developed, 

respectively. The main contributions of this study are: 

1) A network motif-based method for measuring BSS

rebalancing performance is presented using nodes’ (bike

stations’) number of in- and out-degrees. And a new

understanding for the local rebalance performance based on

the correlation between the size-3 motifs and their average

geographical distance is achieved.

2) An understanding of the relationships between the local

network motifs and the system-level performance in BSS,

and how BSS trip behaviors quantified by network motifs

vary with seasons.

To the best of our knowledge, this is the first study using a

network motif-based approach to analyzing STS. The new motif-

based interpretations can facilitate the development of new 

strategies and incentives to engineering BSS structures towards 

a desired system performance. 

The remainder of this paper is organized as follows: the 

technical background of network motifs is introduced in Section 

2. The proposed STS analysis approach is presented in Section

3, and the BSS case study is presented in Section 4. In this 

section, a summary of the three BSSs is provided. Then in 

Section 4.1, the trip networks are constructed, modeled, and their 

motifs are extracted by the motif mining tools. Based on the 

established BSS trip network, the global-level analysis is 

conducted in Section 4.2, and Section 4.3 focuses on the motifs 

and local-level analysis. We discuss the results obtained in 

Section 4.5; and finally, the paper is concluded in Section 5 with 

closing thoughts and our vision of future research directions. 

2. TECHNICAL BACKGROUND
2.1 Network Motifs 

Network motifs are interconnecting patterns emerging in 

specific networks with higher numbers than those in the random 

network [26]. Before introduced by Milo in 2002 [26], network 

motif had been researched for a long period, which was 

considered as certain sub-graphs that appear in a network 

statically different from that in the corresponding random 

network [27,28]. Since then, the research focus is more on two 

topics: motif structure interpretation ([29–31]) and motif mining 

([32–34]). Based on the number of nodes that a motif has, it can 

be categorized into different types. The most common types are 
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size-2 motifs (dyads), size-3 motifs (triads), and size-4 motifs 

(tetrads) [30]. Dyads are the simplest motifs but have a 

significant impact on network formation and higher-level motifs. 

Triads are “transitivity” motifs that can powerfully influence the 

growth of the social network, and they are also often applied to 

analyze the clustering characteristics of a complex network. 

Tetrads are motifs that have caught attention in recent years, and 

certain patterns have been identified in various real networks 

such as biological networks, electronic networks, and social 

networks [30]. Network motifs can also be classified as 

undirected motifs and directed motifs. Given that the triad is the 

basic “transitivity” motif and has been wildly studied in social 

network [30] and is regarded as the most basic building block for 

any other complex graphs, applying size-3 motif to analyze the 

STS will facilitate the understanding of its social aspects. 

Accordingly, in this study we mainly focus on size-3 directed 

motifs. The thirteen motif structures and corresponding IDs are 

listed in Table 1 [35]. 

TABLE 1: SIZE-3 DIRECTED MOTIF LIST 

Structure 
Adjacent 

Matrix 
ID Structure 

Adjacent 

Matrix 
ID 

0 1 1
1 0 1
1 1 0

 238 
0 1 0
0 0 1
1 0 0

 140 

0 1 1
1 0 1
1 1 0

 174 
0 0 0
0 0 1
1 1 0

 14 

0 0 0
1 0 1
1 1 0

 46 
0 1 0
1 0 0
1 0 0

 164 

0 1 0
1 0 0
1 1 0

 166 
0 0 0
0 0 1
1 0 0

 12 

0 0 1
1 0 0
1 1 0

 102 
0 0 0
0 0 0
1 1 0

 6 

0 0 1
0 0 1
1 1 0

 78 
0 0 0
1 0 0
1 0 0

 36 

0 0 0
1 0 0
1 1 0

 38 

A network motif has three statistical properties: 

1) Motif Concentration

Given a graph G and an n-size motif G′, the frequency of 

G′ in G is defined as the times that G′ occurred in G which is 

represented by 𝐹𝐺(𝐺′). Then the motif concentration is defined

as follows: 

𝐶𝐺(𝐺′) =
𝐹𝐺(𝐺′)

∑ 𝐹𝐺(𝐺𝑖)𝑖
(1) 

, where 𝑖 represents the total numbers of non-isomorphic n-size 

motifs [32]. 

2) Motif Z-score

Considering the mean frequency of G′ in a random network 

R be 𝑢𝑅(𝐺′)  and the corresponding standard variance be

𝜎𝑅(𝐺′), then the Z-score is defined as:

𝑍𝐺(𝐺′) =
𝐹𝐺(𝐺′)−𝑢𝑅(𝐺′)

𝜎𝑅(𝐺′)
(2) 

Z-score indicates the significance of sub-graph G′ in G. 

The higher the Z-score, the more important the G′ as a motif in 

G. Additionally, it is worth noting that motifs in a larger real 

networks (with more nodes and links) may have higher z-score 

than that in a smaller network [26]. 

3) P-value

P-value indicates the probability of 𝐹𝑅(𝐺′) > 𝐹𝐺(𝐺′) ,

where 𝐹𝑅(𝐺′) is the frequency of G′ in random network R. P-

value can be calculated by 

𝑃𝐺(𝐺′) =
1

𝑁
∑ 𝛿(𝐹𝑅(𝐺′) > 𝐹𝐺(𝐺′))𝑁

𝑗=1 (3) 

, where N represents the total number of considered random 

networks, and j is the index of each random network. 𝛿 equals 

to 1 when 𝐹𝑅(𝐺′) > 𝐹𝐺(𝐺′); and 0 otherwise. In general, one

motif pattern is significant if the P-value is smaller than a typical 

threshold, commonly 0.01 or 0.05. 

3. THE RESEARCH APPROACH
In this section, we introduce the proposed approach to

analyzing STS based on network motif theory, as shown in Fig. 

1. The first step of this approach is to define and construct the

complex network that best captures the STS structures and 

dynamics based on the research interests and the problems to be 

investigated. In this step, we need to verify if a system can be 

interpreted as an STS, and then define the node, link, whether 

links are directed or undirected, and whether links carry weigh 

or not. With the established network, in step two, motif-mining 

tools such as FANMOD and MFINDER can be applied to search 

for significant motif patterns. Then according to the motif-

mining results, local-level network analysis will be conducted. 

This step is important because the recurring sub-graphs are the 

potential building block of a complex network, thus may have 

significant impact on the system-level performance. On the other 

hand, the global-level network analyses, including both network 

structure analysis and performance analysis, are conducted. 

Finally, critical correlations or variations between the local 

structures and behaviors and the global network performance are 

studied. The insights obtained from the last step can inspire new 

design ideas and guidelines for engineering STS. 

We apply this approach in BSS and demonstrate how this 

approach can help reveal the local-global relations in BSS for 

engineering and design purpose. The BSS is chosen for the case 

study because of the richness of data, thus provides a good 

testbed for validation and verification. 
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FIGURE 1: THE PROPOSED APPROACH TO ANALYZING 

SOCIOTECHNICAL SYSTEMS 

4. CASE STUDY
Viewing BSS as an STS, the technical part refers to the

station system while the social part relates to the transit patterns 

naturally formed by customers. The BSSs selected are Citi Bike 

in New York City, Divvy Bike in Chicago, and Metro Bike in 

the Los Angeles and California metropolitan area, respectively. 

All historical data are publicly available online [36–38], and we 

use the data of the year 2018 in this paper. Figure 2 illustrates the 

station distributions of three BSSs, and Table 2 shows the 

number of stations in each region and the date when the system 

was initiated. According to Fig. 2, the spatial distributions of 

these BSS stations are quite different. Citi Bike stations are 

evenly distributed in NYC, Divvy Bike stations show a radial 

structure in Chicago, while Metro Bike stations are separately 

located in four areas of the Greater LA area. 

These three BSSs are geographically distributed from West 

Coast to Mid-West and to East Coast, and the system sizes rank 

from small to large, i.e., 131 stations, 618 stations, and 846 

stations, respectively. So, the selection of these three systems is 

beneficial to learning the spatial effects and the system 

performance in different developing stages of BSS. 

TABLE 2: BASIC INFORMATION OF CASE BIKE-

SHARING SYSTEMS 

System Name Metro Bike Divvy Bike Citi Bike 

Locale 

Los Angeles 

and California 

metropolitan 

area 

Chicago 
New York 

City 

Date of 

Operation Began 
July 7, 2016 

June 28, 

2013 

May 27, 

2013 

Number of 

Stations in 2018 
131 618 846 

(A) (B) 

(C) 

FIGURE 2: BSS STATION DISTRIBUTIONS OF THREE 

CITIES. (A) CITI BIKE IN NEW YORK CITY; (B) DIVVY BIKE IN 

CHICAGO; (C) METRO BIKE IN LOS ANGELES AREAS 

The trip data packages include information like the trip 

duration, trip date, start, and end station ID, station geographic 

coordinates, and customer information. We followed four steps 

to process the raw data. The first step is to extract the essential 

information of a trip or transit which includes trip start and end 

times, start station ID and geographic latitude and longitude, and 

end station ID and geographic location. Based on the extracted 

data, in the second step, the following treatments are conducted: 

1) deleted trips with incomplete information; 2) deleted stations

marked as test stations and the associated trip data; 3) categorize 

trips by month based on their starting time; 4) count the number 

of times that one trip from one station to another station. After 

step two, the data frame only has seven columns (including start 

station ID, start station latitude, start station longitude, end 

station ID, end station latitude, end station longitude, and the 

number of trips) that will be used for establishing the directed 

and weighted trip network construction (see Section 4.1). 

Finally, we apply the same process to all the three BSSs for all 

12 months in 2018, thus we have 36 networks in total. In each 

network, the stations are defined as nodes, and links represent 

the transit between two stations. The direction of link points from 

the start station to the end station. The weight on a link represents 

the total number of trips that happened between two stations in a 

month. 

4.1 Trip Network Refinement and Motif Mining 
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Given that there are a large number of one-time trips 

occurring in each month, we decided to binarize the links in this 

study and only focus on the links having more frequent trips 

occurred. The threshold for the network binarization is set as the 

minimum mean value (𝜇) of the weights in the 36 networks: 

μ = 𝑀𝑖𝑛(𝜇1,1, … , 𝜇𝑖,𝑗 , … , 𝜇3,12), (𝑖 = 1,2,3; 𝑗 = 1,2, … ,12) (4)

, where 𝑗 represents the index of twelve months, 𝑖 represents 

the index of three BSSs, 𝜇𝑖,𝑗 is the mean value of link weight in

month 𝑗 of BSS 𝑖. With this threshold, if the number of trips 

between two stations is smaller than 𝜇, it is considered as an 

underused route, and we will assume there is no link between the 

two station nodes. The reason for using the minimum mean as 

the threshold is to compare the three BSSs on the same scale and 

only keep the trip links with high frequency in the BSS networks. 

With Equation (4), we get 𝜇 = 4.21. Therefore, only the links 

with weights greater than 4.21 are kept in the networks. Figure 3 

illustrates the link weight distributions of three BSS networks in 

July 2018. It is interesting that even if the three BSSs have 

stations distributed quite differently (see Fig. 2), their link weight 

distributions look very similar. All show that most pairs of 

stations are connected with few trips and very few stations are 

connected with a large number of trips. For example, one pair of 

stations in Chicago has over 1000 trips taken place in July 2018 

while over 10,000 pairs of stations only have one trip in-between 

in that month.  

FIGURE 3: WEIGHT DISTRIBUTION EXAMPLES OF THREE 

TRIP NETWORKS (JUL, 2018) 

After getting the binary trip networks, the motif mining tool, 

FANMOD [35], is used to detect significant motifs. The results 

from FANMOD report the significant motif structures, z-scores, 

p-values, frequencies, and the adjacent matrix list of all existing 

motifs. The detailed analysis of the identified motifs is presented 

in Section 4.3. In the following section, we first analyze the 

networks at a global level. 

4.2 Global-level Trip Network Analysis 
This section firstly presents the analysis of the trip network 

including its visualizations and key network measurements. 

Then a network-based method for evaluating rebalancing 

performance is introduced, and the rebalancing problems in three 

BSSs are analyzed. The network visualization and analysis are 

performed using GEPHI [39]. 

a. Network Structure Analysis
Table 3 presents the basic network structural metrics of Citi

Bike in July 2018. The average clustering coefficient is 0.592 

meaning that the possibility of the nodes in Citi Bike network 

grouping to form communities is high. The clustering coefficient 

is consistent with the observations in many social networks [7]. 

For example, if customers frequently travel between station A 

and station B, and between Station A and station C, the 

likelihood that a trip exists between station B and station C is 

high. This may be due to the nature of the NYC road 

transportation system (e.g., the grid structure) which makes 

every pair of stations have no distinct difference in terms of 

travel conditions (e.g., similar trip distance, similar road 

condition, etc.). This helps the formation of triangle structures in 

the network which is proportion to the clustering coefficients. 

The average path length is 1.947 implying that any pairs of 

stations in Citi Bike can be connected by two trips on average, 

and the diameter of 4 indicates at most 4 trips are needed to 

connect any pairs of stations in Citi Bike. Comparing to a 

complete network in which the graph density is 1, the graph 

density of 0.082 indicates the trip network is quite sparse and the 

system itself is still not fully exploited. Lastly, the network 

modularity is 0.288. It means that the possibility of a network 

being divided into different modules is less than 30%. This is 

true from the observation on the station distribution of Citi Bike 

on the map in Fig. 2. 

TABLE 3: CITI BIKE TRIP NETWORK STRUCTURE 

METRICS (JULY, 2018) 

Item Value Item Value 

Nodes 707 Diameter 4 

Links 41053 
Average Path 

Length 
1.947 

Average 

In/Out 

Degree 

58.066 
Graph 

Density 
0.082 

Average 

Clustering 

Coefficient 

0.592 Modularity 0.288 

Figure 4 further illustrates the network topologies of the Citi 

Bike in July 2018 and the corresponding in- and out-degree 

distributions (Fig. 4 (C)). In Fig. 4 (A) and (B), the size of nodes 

is proportional to the node degree, and the color from blue to red 

corresponds to the number of the in- or out-degree from low to 

high. The in-degree and out-degree distributions of the network 

are plotted in Fig. 4(C).  

The in-degree distribution follows a power law, as shown in 

Fig. 4(C) meaning that there are a few stations serving as the 

hubs (i.e., those big red nodes) that receive bikes returned from 

other stations, while most of the stations (i.e., those small blue 

nodes) only receive bikes from one or two stations. However, the 

out-degree distribution follows no apparent laws, and over half 

of the nodes have no out-degree (a few trips were started from 
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those stations) and most of the remaining nodes have high out-

degree values. The top five start and end station hubs are shown 

in Table 4. There are no stations found being both end and start 

station hubs in the Citi Bike.  

(A) (B) 

(C) 

FIGURE 4: CITI BIKE TRIP NETWORK (JULY, 2018) 

VISUALIZATION AND DEGREE DISTRIBUTION FITTING. (A) 

TRIP NETWORK (IN-DEGREE); (B) TRIP NETWORK (OUT-

DEGREE); (C) IN-DEGREE AND OUT-DEGREE DISTRIBUTION. 

TABLE 4: CITI BIKE TOP FIVE START AND END 

STATION HUBS (JULY, 2018) 

Top Five Start Station Hubs 

Station ID Station Name Out-degree 

519 Pershing Square North 331 

477 W 41 St & 8 Ave 288 

402 Broadway & E 22 St 277 

514 12 Ave & W 40 St 275 

426 West St & Chambers St 270 

Top Five End Station Hubs 

Station ID Station Name In-degree 

497 E 17 St & Broadway 186 

151 Cleveland Pl & Spring St 184 

3435 Grand St & Elizabeth St 184 

403 E 2 St & 2 Ave 184 

368 Carmine St & 6 Ave 183 

In Fig. 5, the network metrics, i.e., the average clustering 

coefficient and the average path length, of different cities are 

compared. It is found that in general spatially different cities’ 

BSSs behave quite differently in terms of these two metrics; and 

temporally, the networks’ structure evolves with obvious 

patterns. For example, as shown in Fig. 5 (A), the average 

clustering coefficient of the Divvy Bike network is lower than 

those of Citi Bike and Metro Bike networks. It indicates that the 

connectivity of stations in Divvy Bike is low comparing to that 

in Citi Bike and Metro Bike, which also can be verified by the 

average path length distributions (Fig. 5 (B)). Besides, the 

average path length distributions also illustrate that any pairs of 

stations in Divvy Bike are averagely linked by more trips than 

that in Citi Bike and Metro Bike. 

(A) 

(B) 

FIGURE 5: TYPICAL NETWORK PARAMETER 

DISTRIBUTIONS OF THREE BIKE-SHARING SYSTEMS IN 2018. 

(A) AVERAGE CLUSTERING COEFFICIENT; (B) AVERAGE 

PATH LENGTH 

On the time scale, Citi Bike has a higher average clustering 

coefficient and correspondingly lower average path length from 

April to July than the other two networks. For Divvy Bike, this 

period starts from May to October. However, the change in the 

average clustering coefficient in the Metro Bike network is 

minimal. These temporal distributions imply that in summer, 

stations in both the Citi Bike and the Divvy Bike have higher 

connectivity, and any pairs of stations in BSS are averagely 

connected by fewer trips. The possible factors that lead to these 

variations can be from both spatial and temporal aspects. From 

the spatial point of view, the geographic variation between 
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stations in different BSS networks is potentially the key factor. 

According to Fig. 2, the station distribution of the Divvy Bike is 

expanding from the downtown area to the suburbs, and the 

stations are distributed much sparser in suburbs than those in 

downtown areas. As a result, the connectivity between suburb 

stations or between suburb and urban stations may be influenced 

by the distance between stations. On the contrary, a more even 

distribution of the Citi Bike stations makes the whole network 

have better transitivity. For the Metro Bike, stations are 

geographically divided into four main areas, as shown in Fig. 2 

(C). The connectivity within each area determines the 

performance of the global network. From the temporal point of 

view, the seasonal effect should be the key factor because it is 

intuitive that more rides and outdoor activities would happen in 

warmer seasons. As shown in Fig. 5, there exist strong patterns 

in terms of the change of metrics during summer months in both 

Citi Bike and Divvy Bike networks. For Metro Bike, since there 

is not much weather fluctuation all year round in the Greater LA 

area, no significant changes of the trip network structure are 

observed. 

b. Network Performance Analysis
Within a trip network, the in-degree and out-degree of a

node correspond to how many trips originate from and end up to 

that node (station). Supposing there are 𝑎 stations connected 

from station 𝑖, and 𝑏 stations connected to station 𝑖, rebalance 

issues emerge when the difference between 𝑎  and 𝑏  is 

significant. Therefore, in this study, the rental problem is defined 

as that the connecting-from stations are less than the connecting-

to stations, the return problem is defined as that the connecting-

from stations are more than the connecting-to stations. At the 

system level, the binary network-based rental metric 𝛼  and 

return metric 𝛽 are defined to characterize a BSS’s rebalancing 

performance. As shown in Fig. 6, assuming the number of in-

degrees of the station 𝑖 is 𝑎𝑖, and the out-degrees are 𝑏𝑖; We

define 𝑐𝑖 = 𝑎𝑖 − 𝑏𝑖  as the metric to quantify the rebalancing

performance at station 𝑖 . Ideally, we expect 𝑐𝑖 = 0  so that

station is perfectly rebalanced in a month. If 𝑐𝑖 < 0, that station

will be more frequently serving as a trip starting point instead of 

ending point, thus would cause rental problems, and if 𝑐𝑖 > 0,

that station will be more frequently serving as a trip destination 

instead of origination, thus would cause a return problem.  

FIGURE 6: BSS TRIP NETWORK REBALANCE PROBLEM 

EVALUATION 

If there are 𝑀  stations having rental problems and 𝑁 

stations having return problems, 𝛼 and 𝛽 can be represented 

as: 

𝛼 =
1

𝑀
∑ |𝑐𝑖|𝑀

𝑖=1 (5) 

𝛽 =
1

𝑁
∑ |𝑐𝑖|

𝑁
𝑖=1 (6) 

Figure 7 shows the results of 𝛼  and 𝛽  the 12  trip 

networks in three cities. Since larger values of 𝛼 and 𝛽 imply 

more serious rebalancing issues, it is clearly seen from Fig. 7 that 

Citi Bike has the worst rebalancing performance among the three 

BSSs, especially from April to July when the system is active 

and rides are frequent. Both return and rental curves reach a peak 

in June at 57.196 and 32.278, which means the rental problem in 

NYC is worse than the return problem. It implies that bikes from 

many stations come to one particular station, but not many 

stations will these bikes go to. And this problem becomes more 

significant in summer (tour season). The imbalance issue of 

Divvy Bike and Metro Bike networks is not as significant as Citi 

Bike, but rental problems remain worse in these two systems. 

FIGURE 7: TRIP NETWORK REBALANCING PERFORMANCE 

OF CITI BIKE, DIVVY BIKE, AND METRO BIKE 

It should be noted that the rebalancing evaluation conducted 

in this study is different from those studies in operational 

research where probabilistic models and statistical methods are 

often used [23,24,40]. Our method focus more on the network 

structure representing the trip patterns. One limitation of the 

current method arises from the neglect of the link weight. That 

means when we define the rebalance performance of a station, it 

only reflects the number of stations that this station connects 

from (return) or connects to (rental), but not considers how many 

trips (i.e., the number of bikes) returned or rented to that station. 

Since we binarize the network based on the minimum mean of 

link weight, this operation would not result in significant bias 

(because most links only have low weights in the network as 

shown in Fig. 3). But further assessment is still needed in future 

research by using weighted networks. So, when a return problem 

is claimed in this study, it means the number of satiations where 
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the bikes are received from is more than the number of stations 

where the bikes are running to. The same interpretation applies 

to the rental problem. 

4.3 Local-level Trip Motifs Analysis 

This section analyzes the size-3 motif characteristics of the 

trip networks, i.e., the local network structures, in three cities. 

Particularly, we present three analyses, including motif 

significance, interpretations of typical trip motifs, and motif 

structure characteristics. 

a. Trip Motifs Significance Analysis
As aforementioned, network with larger size tends to have a

higher z-score, the motif z-scores of Citi Bike are generally 

higher than those in the other two networks, and Metro Bike has 

the lowest z-scores. For the sake of offsetting the size effect, the 

z-scores are normalized. Figure 8 shows the z-scores of the top 

five most significant motifs in each network overtime in three 

cities, and Table 5 gives their corresponding interpretations. The 

rebalance metrics α and β are applied to study the rebalance 

performance of every local structure. 

(A) 

(B) 

(C) 

FIGURE 8: SIGNIFICANT MOTIF Z-SCORE DISTRIBUTION. 

(A) CITI BIKE; (B) DIVVY BIKE; (C) METRO BIKE 

There are only three motifs (motif-102, motif-46, motif-38) 

in the Citi Bike trip network that are statistically significant in 

the whole year, so Fig. 8(A) has three curves only. The changes 

in their z-scores show consistent patterns, i.e., a sharp decrease 

is observed from April to July. In Divvy Bike and Metro Bike 

networks, in addition to the same three significant motifs, two 

more motifs (motif-238 and motif-166) are found significant. 

But, the trends of the z-scores in these two networks are quite 

different. For example, motif-238 in the Divvy Bike network has 

an obvious decline from May to October, yet in Metro Bike, the 

decline happens from July to December. One common 

characteristic of the significant motifs in these three cities is that 

trip motifs with closed topology (as shown in Table 5) are 

popular in all these three BSSs. No open triangles (those shown 

in Table 1) are found significant. It implies if both two stations 

have the same end station or start station, trips are very likely to 

happen between these two stations. So, in BSS, the trips in local 

network structures are highly correlated. This could be the 

reason that any two stations in these closed size-3 motifs can be 

easily reached physically (e.g., not too many blocks between 

them and the distance is short), therefore, customers can pick any 

route among the three to achieve their destinations. To test this 

hypothesis, we analyze the relationship between motif patterns 

and the average distance between stations in the flowing section. 

TABLE 5: SIGNIFICANT TRIP MOTIFS 

INTERPRETATION 

ID Configuration 

Rebalance 

evaluating 

metrics 𝛂, 

𝛃 

Interpretation 

238 
α = 0 

β = 0 

Completely connected trip 

motifs. Because of the 

shortest average distance, 

it has the highest 

transportation efficiency. 

46 
α = 1 

β = 2 

When one station is the 

end station of two different 

trips, then the start stations 

of these two trips are easy 

to be connected. This trip 
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pattern has a potential 

return problem. 

166 
α = 2 

β = 1 

When one station is the 

start station of two 

different trips, then the end 

stations of these two trips 

are easy to be connected. 

This trip pattern has a 

potential rental problem. 

102 
α = 1 

β = 1 

When one station is the 

transitional station of two 

different stations, then 

direct connections exist 

between these two stations 

with high possibility. 

38 
α = 2 

β = 2 

Two trip routes exist 

between two stations. This 

trip pattern has potential 

both return and rental 

problems. 

Lastly, with our network motif-based method, the rebalance 

performances of all the motifs in all three BSSs can be evaluated. 

The size-3 motifs with serious rental problem (α=2) are: motif-

166, motif-38, and motif-6; the size-3 motifs with serious return 

problem (β=2) are: motif-46, motif-38, and motif-36; the size-3 

motifs with no rebalance problem (α=0, β=0) are: motif-238, 

motif-78, motif-140. Note that the remaining motifs (only α=1 

or β=1, or both α=1 and β=1) are considered having the rental or 

return issues but not serious. 

b. The Relationship between Motif Patterns and
Average Distance
Given that the trip distance is one of the most important

factors in customers’ travel preference, relationships between 

motif patterns and the average distance between stations are 

analyzed. Firstly, assuming there is a size-3 motif k with nodes 

A, B, C, emerging in a trip network h times, and the latitudes and 

longitudes of A, B, C are known, the geographic distances 

between A, B, C ( 𝑑𝐴𝐵 , 𝑑𝐴𝐶 , 𝑑𝐵𝐶) can be calculated based on

the GeoPy client [41]. Then, the average distance of motif k is: 

𝐷𝑎𝑣𝑔 =
1

ℎ
∑ (𝑑𝐴𝐵

𝑖 + 𝑑𝐴𝐶
𝑖 + 𝑑𝐵𝐶

𝑖 )ℎ
𝑖=1 (7) 

Secondly, we categorize the size-3 motifs in different sets 

based on whether they are opened or closed and the number of 

directed links (i.e., the number of arrows). See Table 6. 

TABLE 6: MOTIF SET DEFINITION 

Set 

Number 
Structure 

Structure 

Form 

Arrow 

Number 

Set 1 Closed 6 

Set 2 Closed 5 

Set 3-1 Closed 4 

Set 3-2 Open 4 

Set 4-1 Closed 3 

Set 4-2 Open 3 

Set 5 Open 2 

The average geographic distances of the motifs in the 36 

trip networks for all three cities all around the year are calculated 

based on Equation (7). The results are plotted in Fig. 9, and there 

are two interesting findings: 1) a motif’s average distance is 

larger in the summer time than that in the winter time, and 2) the 

average distance well corresponds to the motif patterns along the 

𝑦 direction. For example, especially the Divvy Bike, the seven 

groups of curves are vertically distributed, well corresponding to 

the seven sets of motifs from top to bottom in Table 6. With 

further analysis, the second finding is concluded as follows: 

1) Observation 1: The average distance of motifs in closed-

form is shorter than those in open-form.

2) Observation 2: Motifs with less number of arrows have a

longer distance.

3) Observation 3: Motif form has a higher priority than the

number of arrows in determining a motif’s average distance.

For example, considering motif-78, motif-38, and motif-

140. Even if motif-78 has a greater number of arrows than

motif-38 and motif-140, it has a longer average distance

because it is an open-form motif.

In Fig. 9(B), all the results follow these observations

perfectly; in Fig. 9(A), the average distance of all the motifs 

follows those observations except from April to July; in Fig. 9 

(C), the distance of motif-238 is distinctly shorter than the motifs 

in set 5. The possible explanations for these two inconsistent 

observations are as follows. First, the geographic distance of two 

stations is calculated instead of the route distance for 

simplification, so the distance data might not be accurate. 

Second, for Metro Bike, since the differences between any two 

motifs’ average distance are very small, the impact of such a 

distance inaccuracy can be amplified which makes inconsistency 

happen. For example, according to Fig. 9 (C), the average 

distance of motif-174 is smaller than that of motif-238 in 

February, but based on our observation, the average distance of 

motif-174 should be larger. For Citi Bike, motif-46, motif-38, 

motif-36, and motif-6 are also inconsistent with our observation 

but share a very similar trend in the moths from April to July. 

The possible reason is that in the tour season of NYC (from April 
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to July), Citi Bike is frequently used. Consequently, the size of 

its trip network size grows, thus more uncertainties can be 

introduced. To completely understand these inconsistencies, 

more detailed analyses need to be conducted in our future study. 

(A) 

(B) 

(C) 

FIGURE 9: MOTIF AVERAGE DISTANCE DISTRIBUTION. (A) 

CITI BIKE; (B) DIVVY BIKE; (C) METRO BIKE. 

4.4 Discussion 

In this section, we discuss the potential correlation between 

the local trip motif patterns and the global-level performance of 

the BSS networks. Firstly, based on all the results presented, it is 

found that the seasonal effect has a significant impact on both of 

the global trip networks and the local trip motifs. For example, 

during the summer time (from April to August) in Chicago, there 

is a significant increase in terms of trip motifs’ average distance 

(Fig. 9(B)) and a decrease in the average path length of the trip 

networks (Fig. 5(B)). Secondly, according to Table 5, motif-46, 

i.e., one of the most significant motifs in all three networks

indicated by the z-score in Fig. 8(A), indicates the return 

problem. However, Fig. 7 shows that the rental problem is more 

serious than the return problem at the global level (from April to 

July). Merely evaluating the system-level performance does not 

help acquire a complete picture of a BSS’s rebalance 

performance. The entire system exhibits a rebalance problem is 

actually because unbalance station connections exist which 

means that the number of stations being treated as start points is 

different from that of the station being treated as end points. 

Solving the rebalancing issue of the entire system requires an in-

depth understanding of the local-level rebalance problems, and 

vice versa.  

According to the distributions of the average distance shown 

in Fig. 9, strategies for adding new stations or customer-oriented 

rebalancing strategies can be developed to promote the 

formation of certain motifs from the bottom up to solve the 

system-level rebalancing issues. For instance, as shown in Fig. 

10, if motif-46 is identified in the trip network with stations A, 

B, C, the system designer could establish a new station D with 

shorter distances to B and C to promote the formation of trip 

motif-238 which has better rebalance performance. In addition, 

if a closer station D has existed, certain incentives (e.g., 

discounts) or more bike allocation can be made to encourage 

customers to travel between stations B, C, and D instead of 

stations A, B, and C to promote the formation trip motif-238. 

FIGURE 10: EXAMPLE OF OPTIMIZING STRATEGIES OF 

LOCAL REBALANCING ISSUES. 

5. CONCLUSION
In this paper, to fill the research gap of gaining a better

understanding of the local-global relations of the STS, we 

propose an STS analysis approach based on the network motif 

theory. This approach takes both global-level network topology 

and local-level network motifs into consideration and can help 

designers and systems engineers more accurately identify the 

potential causes of inadequate system performance. In this study, 

BSS is chosen as an example for demonstrating and validating 

the proposed approach. To the best of our knowledge, this is the 

first time BSS is treated from an STS point of view, and the 

network motif theory is applied to analyze its system structure 

and rebalance performance.  

Using the BSSs from three cities, we have analyzed the 

global trip network structures and the rebalance performance as 

well as the characteristics of the local trip motifs. The 

conclusions are: 1) season effect is a critical factor to influence 

Copyright © 2020 ASMEV11AT11A045-10

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/84003/V11AT11A045/6587165/v11at11a045-detc2020-22631.pdf by U

niversity of Texas At Austin user on 22 January 2024



both the global and the local network structures and 

performance; 2) global trip networks could exhibit performance 

that is different from what is illustrated in the local trip motifs; 

3) obvious hierarchical distributions are found by calculating the

average distances of the trip motifs, and the distance closely 

relates with the motif topologies: a. motifs with closed-form 

have shorter distance than those with open form; b. motifs with 

more directed arrows have shorter distance than those with less 

directed arrows; c. motif form has a higher priority than the 

directed arrow numbers. Based on these conclusions, 

rebalancing strategies can be developed by considering factors 

such as season, geographical distance, and motif patterns. 

Besides the mentioned customer-oriented strategies, truck-based 

rebalance strategies also can be established by considering motif 

structures with serious rebalance problems. Tests of the design 

strategies developed based on network motif-based insights will 

be considered in our future study. 

Additionally, compared to the BSS dynamic rebalancing 

analyses in operation research that predict station pick-up and 

drop-off demands based on the data in a shorter time period (e.g., 

hourly) [42,43], our network-based analyses study travel paterns 

in a longer period (i.e., monthly) aiming to understand the 

relations between local travel patterns (represented by size-3 

motifs) and the system rebalancing issues. In our future study, 

the weighted BSS network (taking trip frequency as the link 

weight) will be analyzed to inform the design of strategies for 

the improvement of system performance. In such a study, those 

approaches to demand prediction from the operational research 

can be integrated into the network-based framework to test if 

certain mechanisms and/or interventions could be indeed 

effective in improving a BSS’s rebalance performance. 
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