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» Biological neuron
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(Wikipedia)
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Reference: Shreya, S., Verma, G., Piramanayagam, S.N. and Kaushik, B.K., 2020. Energy-efficient all-spin BNN using voltage-controlled spin-orbit torque device for digit recognition. IEEE Transactions on Electron Devices, 68(1), pp.385-392.
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Standardization / Normalization

» Normalization is used when the data
A doesn't have Gaussian distribution whereas

Standardization is used on data having

° ‘e Gaussian distribution.
¢ * ¥ ) K 1 i > Normalization scales in a range of [0,1] or
. Ce ¢ v K [-1,1]. Standardization is not bounded by
| 1 ' range.
Actual Data After normalizing After standardization » Normalization is highly affected by outliers.

Standardization is slightly affected by

outliers.

(https://www.someka.net/blog/how-to-normalize-data-in-excel/)

N » Normalization is considered when the
L L / i —H

Standardization (Z-score Standardization): Xj = algorithms do not make assumptions about
O

the data distribution. Standardization is
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t N used when algorithms make assumptions
max(X)—min(X)

Normalization: X-’ —
- 4]
about the data distribution.
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Activation Function

B

s y . { Threshold Function J
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- 1 . oy ) LUEX2 v’ depends on a threshold

m O(X)

. Dif x <O |

> value that decides whether
<

- a neuron should be

..2 ' ) - activated or not.

3 | 3w

= =1

° u [ | u

g — Limitation

§ * |t cannot provide multi-value outputs—for example, it cannot be used for multi-class

qE: classification problems.

(8 * The gradient of the step function is zero, which causes a hindrance in the backpropagation

process.




Activation Function

1 f'(x) = g(x) = sigmoid(x)*
o (1-sigmoid(x))
...... 1 ,O(x) 14 e
g 5 g

v' Takes any real value as input and outputs values in the range
of O to 1.

v" One of the most widely used functions

The derivative of the Sigmoid Activation Function

* For values greater than 3 or less than -3, the

network ceases to learn and suffers from the

v' Commonly used for models where the probability is an output Vanishing gradient problem.

v The function is differentiable and provides a smooth gradient, | . Sigmoid outputs are not zero-centered, which
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l.e., preventing jJumps in output values. This is represented by makes the training of the neural network more

an S-shape of the sigmoid activation function. difficult and unstable.




Activation Function

. — Limitation
y [ Hyperbolic Tangent (tanh) ] ot Tanh (derivative)
S ksl
.............. ’ SR I

Gradient of the Tanh Activation Function

v" The output of the tanh activation function is Zero centered;

v' Usually used in hidden layers of a neural network as its * Italso faces the problem of vanishing

values lie between -1 to 1; therefore, the mean for the gradients similar to the sigmoid

hidden layer comes out to be O or very close to it. It helps activation function. Plus, the gradient of

in centering the data and makes learning for the next layer the tanh function is much steeper as
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much easier. compared to the sigmoid function.
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Activation Function

[ Rectifier ]

1 O(X) = max(x.O)

" m
0
E W; X;

1=1
v'Only a certain number of neurons are activated, making
the RelLU function more computationally efficient than
the sigmoid and tanh functions.
v'RelLU accelerates the convergence of gradient descent
towards the global minimum of the loss function due to

its linear, non-saturating property.

Limitation
The Dying ReLU problem

fi(x) = g(x) =1, x>=0
=0, x<0

The Dying ReLU problem

The dying ReLU problem could create
dead neurons which never get activated.
All the negative input values become
zero, which decreases the model’s ability

to fit or train from the data properly.
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How Do Neural Networks Work
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How Do Neural Networks Work

Study Sleep Exam
Hours Hours (Actual)

79% 90%

@ Cost Function

X1
W1

X2 Output Value

C= =G5y
_Zy y

X3 Backpropagatlon
@ Actual Value

X
-
o
S
\
0
<
©
t
3
0
<
G
2
)
.
Qo
T
0
c
0
O
D
0
S
0
0
£
o
n




How Do Neural Networks Work

L

{ R

; Hours Hours (Actual)

o= 79% 90%

Q

<

©

S

o X1 N

< WA

S

o

L.

% W2

0 X2 = - Output Value
8 W3 Cost Function
O |

o , C=-y)*
§ X3 © 2

O Actual Value
=

=

&




How Do Neural Networks Work
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How Do Neural Networks Work
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How Do Neural Networks Work

Study Sleep Exam
Hours Hours (Actual)

r- """~ = - =-=-=-=-"="="=""="-"="-"=""=""="//"/=7"="/7=/7=/7s——— I
1 79% 90%
2 77% 88%
3 8 8 80% 5%
4 6 12 70% 68%

Cost Function: C = Z%(JA’ — y)>
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How Do Neural Networks Work

» Gradient Descent

Cost Function C = %(? — y)?
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How Do Neural Networks Work

» Gradient Descent

Cost Function C = %(? — y)?

However,....
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How Do Neural Networks Work

> Normal Gradient Descent

Exam
(Actual)

1 12 7 79% 90%
| 2 11 8 77% 88%

J/ 3 8 8 80% 75%
’ 4 6 12 70% 68%

* Adjust W1, W2, W3
—
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How Do Neural Networks Work

» Stochastic Gradient Descent
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How Do Neural Networks Work

» Stochastic Gradient Descent

Study Sleep Exam
Hours Hours (Actual)

1 79% 90%

/4 2 7% \ 88%
7 3 8 8 80% 75%
4 6 12 70% 68%

Adjust W1, W2, W3
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How Do Neural Networks Work

» Stochastic Gradient Descent

Study Sleep Exam
Hours Hours (Actual)

1 79% 90%
2 7% 88%
13 8 8 80% |  75%
’ 4 6 12 70% 68%
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How Do Neural Networks Work

» Stochastic Gradient Descent

Study Sleep Exam
Hours Hours (Actual)

1 79% 90%
2 7% 88%
3 8 8 80% 75%
14 6 12 70% 68%
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How Do Neural Networks Work

(Actual)

(Actual)

1 12 7 79% | 90% Upd W’s | | | 90%
2 11 8 77% 88% Upd W’s 2 11 8 77% 88%
Upd W's <:| 3 8 8 80% 75% Upd W’ g
0 0 p S | 5%
4 6 12 70% 68% Upd W'’s 12 70% 68%

Normal (Batch) Stochastic
Gradient Gradient

Descent Descent
v'Easy to flow to the local minimum v'"Row-by-row running makes SGD has much
VIt has lower efficiency higher fluctuation and thus more likely to find the
v'The main advantage of GD is that it is a global minimum

deterministic algorithm, I.e., each time you have the  v|t's a faster algorithm than GO

same Initial weights, you will get the same process v'SGD cannot ensure the same update of weights

to update your weights. even if the initial weights are the same.
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Study | Sleep
Hours | Hours
1 12 V4

2 11 3
30 6 12
81 11 3
82 3 10
100 6 6

1: Pass 0: Not Pass

Trained Model

79%
7%
70%
69%
85%

66%

Exam
(Actual)
1

1

Training

Testing

Sigmoid

Binary cross-
entropy loss

(Actual)

0
-
1 N
Logloss = == 2 -(y;*log(p;) +(1-;) *log(1-p,)) Loss
=1

function
Corrected Predlcfe-d
o probability
o]e)oT:1e11114Y
(P)
-0.04 0.92 0.92
-0.36 0.44 0.44
-0.40 0.40 0.60
-0.11 0.78 0.22
! 0.04 — 0.36 — 0.40 0.11
50 (—0. . . 11)



'§ Study | Sleep Sy Predictive Performance Evaluation
; Hours Hours Actual
e 79% » Confusion matrix
0 2 11 8 77% 1 | _ _
< Training Determine a probability threshold (typically 0.5)
© 80 6 12 70% 0 |
> 81 11 8  69% O Predicted
32 8 10 85° 1 i Not Pass™ P
< & Testing ; —
"'6 s N True Negative | False Positive
" 100 6 6 66% 0 5/ 3 (TN) (FP)
\ . . I3
-q 1:Pass  0:NotPass <\ 2 |JFalse Negativell True Positive
& & (FN) (TP)
= .
o Trained Model Y N
O o TP
O Precision = TP + FP True Positive Rate (TPR) = R
I7
© Exam Predicted Probability Reocall = TPR = TP alee Positive R —— FP
a (Actual) for Pass B TP+ FN alse Positive Rate (FPR) = FP +TN
Q 31 0 0.48 ‘
g 82 1 0.88
7p) F1 Score — 2 - Precision - Recall (harmonic mean of precision and recall,

100 0 0.53 Precision + Recall range from O to 1 where 1 is the best)
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Predictive Performance Evaluation

» Confusion matrix

Determine a probability threshold (typically 0.5)

Predicted
Not Pass/ I Pass
s [ True Negative '8 False Positive
5/ 3 (TN) (FP)
< 4 [ False Negative[ll True Positive
n. (FN) (TP)
- TP
Precision = TP + FP True Positive Rate (TPR) = 5N
Recall = TPR = ——— l »
ecall = = TP L FN False Positive Rate (FPR) = N

71 Srare = 2 - Precision - Recall (harmonic mean of precision and recall,
Precision + Recall range from 0 to 1 where 1 is the best)

81

82
33
34
85
36
37
38
39

90

Exam
(Actual)

0

1
1
0
1
0
0

0.48

0.88
0.49
0.34
0.43
0.2
0.1
0.65
0.9

0.9



L .. :
- Predictive Performance Evaluation
°
S _ _ (Actual)
"q'; » Confusion matrix 31 0 0.48
Z Determine a probability threshold (typically 0.5) 82 1 0.88
C_B 83 1 0.39
; 34 0 0.15
Q /Predicted\ 85 1 0.43
> Not Pass Pass 86 0 0.21
“6 E True Negative '8 False Positive 87 0 0.71
" Tg/ S (TN) (FP) 88 ' 0.65
4 N | - 89 ' 0.9
o < 4 QFalse Negativell True Positive 90 , 0.9
O @ (FN) (TP) '
g Predicted
O A TP

recision = 11 —
.2 TP + FP True Positive Rate (TPR) TP T FN
/)
© Recall = TPR = e False Positive R FPR) =
m ecall = = TP L EN alse Positive Rate ( ) = P TN
o 4
E Precision = T TPR = Recall = 3
o
N F1 Score — 2 - Precision - Recall (harmonic mean of precision and recall,

Precision + Recall range from 0 to 1 where 1 is the best) FPR = Z F15core = H
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Predictive Performance Evaluation

» Confusion matrix

Determine a probability threshold (typically 0.5)

Predicted
Not Pass/ ™ Pass
s [ True Negative '8 False Positive
5/ 3 (TN) (FP)
< 2 [False Negative[l True Positive
o (FN) (TP)
TP
Precision = TP + FP True Positive Rate (TPR) = BN
Recall = TPR = e l ‘tive R FPR
ecall = = TP L FN False Positive Rate (FPR) = PN

79 SEaie = 2 - Precision - Recall (harmonic mean of precision and recall,
"~ Precision 4+ Recall range from 0 to 1 where 1 is the best)

» Aggregated measurement

l
Receiver Area, Undey
Operating TPR ? Curve (AUC)
Characteristic [0.5, 1]
(ROC) curve
l Pevfect predicton
_____________________ 4
Precision- Precicon Area Wndey
Recall (PR) curve (AUC)
curve
TP+FN
[0,1 - TP+FN+TN+FP]
TPFN | Ao skill PR cuwe
TPHRN+TNFRR T T T -
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Predictive Performance Evaluation

» Aggregated measurement

Recelver

Operating
Characteristic TPR

(ROC) curve

Precision- )
Recall (PR) Tecision

curve

THEN
TPHEN+TNATP

Area, Undey
curve (AUC)

TP+FN
[OJ-_' ]
TP+FN+TN+FP

| Ao skill PR Cuwe

81

82
83
84
85
86
87
88
89
90

0.48

0.88
0.39
0.15
0.43
0.21
0.71
0.65
0.9
0.9

0
1
1
0
1
0
0
1
1
1

TPR
FPR
Precision
Recall
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0.71 0.8
0.83 0.67

- =2 O O O O O O -~ O

_\og

0.5

FPR

©O O O O O O O O O O o o



TEXAS ENGINEERING

Outline

" Section 2. Graph Neural Network (GNN)

* Graph data and graph tasks
* How do GNNs work
* GraphSAGE



Graph Data and Graph Tasks

» Image as graph
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Graph Data and Graph Tasks

» Graph-valued data in the real world Unlike image and

R text data, complex
A/ networks do not
..- ol have identical
_ [ 4 adjacency matrices
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Caffeine molecule

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

et st st et st st st st st st st st st st st st st st st et st st st st et st st st st et st st

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
3333333333333333333333333333333

v i S v v R e e R Y R R s S R Y - s v R e R - e v R e R v R e v Y R v Y R}

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

=

Mr. Hi I.llllll I-I l I l =
student1 B 7
student2 I W BEEE = BE i8]
student 3 | | @EE

student 4

student 5

student 6

student 7

student 8

student 9
student 10
student 11
student 12
student 13
student 14
student 15
student 16
student 17
student 18
student 19
student 20
student 21
student 22
student 23 ! =
student 24 7
student 25 B
student 26
student 27 [ [
student 28 ]
student 29 ] I

Graph Neural Network (GNN)

N
o
O

i
O
O

student 30 [
student 31

&
student 32 | - n
o et h ol B E ol

Image of karate tournament Adjacency matrix of the interaction Graph representation of these interactions
between people in a karate club



Graph Data and Graph Tasks

» Graph-based tasks

E Graph-level classification Node-level clustering Edge-level Prediction
4
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3 ° 00 o, o § O\ V23 " |
o) o o © o — Positive link
e O Negative link
g Input: graphs Input: graph with unlabeled nodes Input: period one graph
O f \ 0
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Graph Data and Graph Tasks

» The challenges of graph-based deep learning

» Different types of graph information need different approaches to represent and be
compatible with neural networks

* The representation of a graph’s connectivity is especially complicated
* Drawbacks of adjacency matrix representation:

v' Space-inefficient (0(n%,4.¢))
v" One graph connection can be encoded by
different adjacency matrices

©,
©

» Using adjacency list for the representation

of graph connection is more memory- : :  HE-EE_ |- EE -0 N -EE -
ey E -Hl - B SN NN N EEE
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» Case 1. Edge to node embedding

V1=E1+E3+E5+E7=[E]n

How Do GNNs Work
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How Do GNNs Work

» Case 2: Neighborhood aggregation to node embedding
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Vl:g[V1+V2+V3+V4+V5]=[=]n

V'e

@ Class 1
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GraphSAGE Algorithm
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]’rainable weight matrices (what we learn)

Y4
p \

heé =¢ ( E_I_/i{_,g AGG (h{‘t‘l,‘v’u S N(V)) ::Ll?ghﬁ‘l])

GraphSAGE Algorithm

Layer-0 h) = x,,
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GraphSAGE Algorithm

hk =g ( Mﬁ"‘ - AGG (h,’j‘l,Vu €N (v)) {l?_;lihfﬁ‘l])

Trainable weight matrices (what we learn)

Inductive capability:

Once obtain the trained weight matrices,
they are shared for all nodes

» Example: train on protein interaction graph from model organism A and generate embeddings on
newly collected data about organism B, which shares similar features with A.

Zy,
Obtain the trained weight
matrices: Wy, B,

Generate embeddings
Train on model graph A for new graph B



TEXAS ENGINEERING

Outline

" Section 3. Application: Modeling Shared Mobility System Using GNN
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Background and Motivation

.....
NORTH SIDE

OUt 6 S’tatlon 4
Google i it Af;ay Google i
Factors Influencing Shared Mobility System
Travel Behavior Predictive Model
 Time factors, e.q., peak : . .
. - P * Help test system design - Only predict station-level
hours, holidays h
. Climate effects approac rental and return demands
. Spatial dependencies * Forecast the usage of but do not tell where the
P P system capacity return comes from and the

among serving stations
» Surrounding Point of
Interests (POls)

» Guide decision-making on rental goes to.
system operation



Background and Motivation

Shared Mobility System Shared Mobility Network and Hierarchical Average Distance
Significant Local Service Systems Distributions of Different Local

Service Systems

Divvy Bike Motif Average Distance

—
w

+ Motif-238
2r Motif-174
s 11F - +Mot§f—102
~ < Motif-166
§‘°’ =~ & Motif-46
g o Motif-78
g & Motif-38
a8 - Motif-140
& * v~ Motif-164
L - Motif-14
:. e
’g j: &) - & > Moti-6
=2 S :
) 2
~— Understanding Generated From Previous Works!] N

* The Complex network is a powerful tool to represent shared mobility systems and user behaviors.

« Significant local service systems are identified based on network motif theory.

* The local service systems show typical characteristics such as obvious hierarchical average geographical distance
distribution which is correlated to the local system structures.

\_ /

[1] Xiao, Y., and Sha, Z., 2020. “Towards engineering com- plex socio-technical systems using network motifs: A case study on bike-sharing systems”. In International Design Engineering Technical Conferences and Computers and In- formation in Engineering Conference, Vol.
84003, American Society of Mechanical Engineers, p. V11AT11A045.




Research Question and Objective

/O Research Objective
The existences of trips occurring from one\

station to another in a period of time.

/
Develop a network-based approach to predict travel demand between stations

iIn shared mobility systems based on local network information.

\_

v, V.
Y
Research Questions E.q.. the local network information of V2 "3 |
means the information of V1 and V5 Vv, N\
/ V3

Whether and to what extent does the| local network information|(e.g., structure

and node features) play a role in the formation of a shared mobility network??

/




Research Approach

Period One Shared Mobility Network

Predicted Result Evaluation

Confusion matrix
F1 — Score

« Receiver operating characteristic (ROC)
curve and area under curve (AUC)

 Precision-recall (PR) curve and area under
curve (AUC)

Predicted

Real Link
Link List For
Period Two

List For
Period Two

» Trained Neural

Network Model

Approximate
Adjacency
List

Period One: Month i in year Y; Period Two: Month i inyearY + 1, (i=1,...,12)




Research Approach
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Period One: Month i in year Y; Period Two: Month i inyearY + 1, (i=1,...,12)




Node Features

Station attlributes determined by system designers

Education | Recreational & Sustenance

Latitude | Longitude 4 Tourism # Residential # 4 Healthcare # | Transportation #

[2] Liu, J., Sun, L., Li, Q., Ming, J., Liu, Y., and Xiong, H., 2017. “Functional zone based hierarchical demand pre- diction for bike system expansion”. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 957-966.



Node Features

Station attributes determined by system designers

Latitude | Longitude Educ;atlon Recreational & . . Sustenance

) Residential # Healthcare #| Transportation #
Tourism # i+

Y
Station surrounding point of interests (POls)

Sustenance 2
/! Transportatl n3

Recreatlon\ !
Station 1 ,aI&Tourlsm" .

! I

\ I 1 /
\
\
R j’ ansportatzlon
1
|
\
\

e - 9 Station 3 Healthcare 1,

l
\, Sustenance 4 9 n
\ ’

\ Transportation.2’

FlnanC|aI 1

——— —
- -

9

, Financial 2

~ -
Il N

[2] Liu, J., Sun, L., Li, Q., Ming, J., Liu, Y., and Xiong, H., 2017. “Functional zone based hierarchical demand pre- diction for bike system expansion”. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 957-966.




Node Features

Station attlributes determined by system designers

Latitude | Longitude Education | Recreational & Residential # Sustenance Healthcare # | Transportation #

Tourism # #

Y
Station surrounding point of interests (POls)

‘‘‘‘‘‘‘‘‘
\\\
”
” \\
s N
7 N
7 N
7’ AN

;" Healthcare 2 N, 2.5
/// \\
\
/ \
/ \ 2 o
/ | m Financial
i Transportation \ .
! Education 1. B Education
' . 1.5 : .
\ Station 2 ," = W Recreational&Tourism
A >
\ d . .
)
\ R K O 4 Residential
\
\ 9 0 W Sustenance
S B Healthcare
~._ Sustenance3 _.° 0.5
TSe~el_ - -5 B Transportation
0)

Station 1 Station 2 Station 3

R: referring to existing workl?l, a person would prefer to ride when the
origin-to-destination distance is 1.5 ~ 2.7 miles. Therefore, 1.5 miles is
the longest distance that people are willing to commute by walking.

[2] Liu, J., Sun, L., Li, Q., Ming, J., Liu, Y., and Xiong, H., 2017. “Functional zone based hierarchical demand pre- diction for bike system expansion”. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 957-966.



esearch Approach
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Period One: Month i in year Y; Period Two: Month i inyearY + 1, (i=1,...,12)




GNN Model

For Link Prediction

Node Embedding By GraphSAGE!3! Binary Link Classification

Sampled in- and out-
neighborhoods of a
central node

[3] Hamilton, W. L,, Ying, R., and Leskovec, J., 2017

[ Node embedding Supervised learning

| : Normalized node feature Loss function: binary cross-entropy

- : Aggregator

. : Central node
‘—» : In neighbor Start nOde
.4_ : Out neighbor embedd.mg
(Dimension:
M) g
y 4 :
(® ]
N\ 3
o
End node O
embedding
(Dimension:
M)

Input layer Hidden layer Output layer

Aggregate neighborhood embedding (2M (2M (One neuron)
information to get node (2Mm) neurons) neurons) Sigmoid
embedding Relu

. “Inductive representation learning on large graphs”. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025-1035.



Research Approach
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Adjacency List

» Adjacency

Approximate Approach List

Period One: Month i in year Y; Period Two: Month i inyearY + 1, (i=1,...,12)




Adjacency List Approximate Approach

»Approach 1: Modified Period One Mobility Network

ooooooo
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Perlod One Moblllty Network Perlod Two Moblllty Statlons Modified Period One Moblllty Network
»Approach 2: ANN-Based Approximate Period Two »Approach 3 (Ground Truth): Real
Mobility Network Period Two Mobility Network
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Google i &

Approxmate Perlod Two Moblllty Network Real Period Two Mobility Network




Baseline

Period One Shared Mobility Network

Predicted Result Evaluation

Confusion matrix
F1 — Score

« Receiver operating characteristic (ROC)
curve and area under curve (AUC)

 Precision-recall (PR) curve and area under
curve (AUC)

Predicted

Real Link
Link List For
Period Two

List For
Period Two

» Trained Neural

Network Model

LOWER

WEST SIDE stéot

5 0

NLEY PARK
S
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Period One: Month i in year Y; Period Two: Month i inyearY + 1, (i=1,...,12)




Baseline: ANN Link Prediction Model

Binary Link Classification

Supervised learning;
Loss function: binary !

cross-entropy

Start node _

features - £

(N) N

Concatenate ! c

— ) ¢ G

: 2

| =

' >

End node c>t<,

features =
(N)

Link features ' Inputlayer  Hidden layer  Output layer
(2N) i (2N neurons) (2N neurons) (One neuron)
Relu Sigmoid




Case Study
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« System Name: Divvy Bike
* Location: Chicago

« Date of Operation Began:

June 2013

Period One Shared Mobility

Network

# of Connections
320

May 2016 Binary Directed Trip Network

(# of Nodes: 535, # of Edges: 21221)

Period Two Shared Mobility
Network

May 2017 Binary Directed Trip Network

(# of Nodes: 582, # of Edges: ?)



Data Preparation and Experiment Settings

»Data preparation for GNN-based link prediction

* May 2016 trip network (node features, adjacency matrix)

 Total # of positive links in May 2016 + an equal # of sampled negative links

0 . . 0 . F
(70% for training, 30% for validation) Training Input

 May 2017 approximate trip network (node features, approximate adjacency
matrix) Predicting Input

* All of the positive and negative links in May 2017 _
Evaluation Input

»Data preparation for ANN-based link prediction

« May 2016 node features Training Input

 Total # of positive links in May 2016 + an equal # of sampled negative links
(70% for training, 30% for validation)

« May 2017 node features Predicting Input

* All of the positive and negative links in May 2017 Evaluation Input

»Experiment Parameter Settings

Setting ltems Model Applied | Value
Neighbor search 5
depth
# of sampled in- and
out-neighbors in two 10
hops
GraphSAGE

Node embedding

. 30
size
Input and hidden
layer size for 60
GraphSAGE
Input and hidden
layer size for ANN ANR 20
Minibatch size 192
Epoch GraphSAGE | 500

&

Learning rate ANN 4e-4
Dropout 0




Result: GNN (GraphSAGE) VS ANN
Confusion Matrix ANN Link Prediction GNN (GraphSAGE) Link Prediction m

(Probability threshold = 0.5)

0 1 0 1
0 278859 39426 278930 39355 * When taking 0.5 as the
(TNR 87.61%)  (FPR 12.39%) (TNR 87.64%) (FPR 12.36%) probability threshold, GNN
Actual Class and ANN share a similar
1 1262 18595 1475 18382 dict 1 both
(FNR6.36%)  (TPR 93.64%) (FNR 7.43%) (TPR 92.57%) PUSRUEINAS PO LN 10
positive and negative
F1-Score 0.478 0.474 categories.

e Similar F1-Score and ROC
AUC (difference less than

1.0 100 AUC of No Skill = 0.059 0.005) further indicate both
2= AUCOf AN =0.576 - models’ identical predictive
08 0.8- power in both positive and
T negative categories.
299 S06 » Higher PR AUC of
'ZgM I3 GraphSAGE implies that
v “o4 neighborhood information can
= . enhance the predictive power
0.2 of the minority class (positive
0o, I &~ AUC of GraphSAGE = 0.957 links) at an aggregated level.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate Recall




Approximate Adjacency Lists By ANN

1.01 s 1.0¢ v AUC of No Skill = 0.059
—— AUC of ANN = 0.576
G Mean = \/TPR «+ (1 — FPR) ® Optimal Threshold for PR = 0.837
0.8 - 0.8'
)
e
©
o .
v 0.6 ) S 0.6
. v
= - 5
s 0.4 . A= 2 * Precision * Recall
O et 0.4- F1 Score = —
S Precision + Recall
=
0-2 PP AUC of No Skill = 0.5 0o
—— AUC of ANN = 0.960
0.0 ® Optimal Threshold for ROC: 0.485 | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Recall

Optimal threshold for ROC: a balance
between true positive and false positive rates.

Optimal threshold for ROC: a balance
between precision and recall.




Result: GNN (GraphSAGE) With Different Approximate

Adjacency Lists

Model 1: ANN-Based Approximate

Model 2: ANN-Based Approximate

Confusion Matrix Approach (With Optimal Threshold for ROC . . Approach
(Probability threshold = 0.5) PP ( P ) (With Optimal Threshold for PR)
0 1 0 1
0 262343 55942 282863 35422
(TNR 82.42%) (FPR 17.58%) (TNR 88.87%) (FPR 11.13%)
Actual Class
1 1475 18382 2474 17383
(FNR 5.52%) (TPR 94.48%) (FNR 12.46%) (TPR 87.54%)
F1-Score 0.397 0.478
_ - : Model 4: Real May 2017 Trip Network
Confusion Matrix Model 3: Modified May 2016 Trip Network (Ground Truth)
(Probability threshold = 0.5)
0 1 0 1
0 278930 39355 278203 40082
(TNR 87.64%) (FPR 12.36%) (TNR 87.41%) (FPR 12.59%)
Actual Class
1 1475 18382 1042 18815
(FNR 7.43%) (TPR 92.57%) (FNR 5.25%) (TPR 94.75%)
F1-Score 0.474 0.478




Result: GNN (GraphSAGE) With Different Approximate
Adjacency Lists

1.0- - 1.0-

0.8 ’ 0.8
Q
et
©
e C
ar (%
= <
O Q
a 0.4 a
Q 0.4
= S N AUC of No Skill=05 | | e AUC of No Skill = 0.059
= 0.2 —4&— AUC of Model 1 = 0.951 —4&— AUC of Model 1 = 0.568

' * —m— AUC of Model 2 = 0.948 02 —m— AUC of Model 2 = 0.605
| —e— AUC of Model 3 = 0.957 i ™ —e— AUC of Model 3 = 0.660 |
00! .’/ —— AUC of Model 4 =0968 | | ______ —4— AUC of Model 4 = 0.673
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall

Model 3 shows higher ROC AUC and PR AUC than Model 1 and Model 2 indicating using the modified

Period One network to approximate the neighbor information in the Period Two network is adequate for
link prediction.



Summary

« We proposed a complex network-based approach based on GNN to predict travel demand

between stations in shared mobility systems.

« By comparing to ANN, we revealed the importance of network neighboring information in

travel demand prediction of shared mobility system.

« We tested different adjacency list approximate approaches and figured out taking previous
year's network structure to approximate next year’'s node embedding can generate the

best link prediction results for shared mobility system.
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" Section 1;
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" Section 2:
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® Section 3: Travel Links Prediction In Shared Mobility Networks Using Graph Neural Network Models
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