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Neuron Activation Function How Do Neural Networks Work ANN

Ø Biological neuron

(Wikipedia)
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Reference: Shreya, S., Verma, G., Piramanayagam, S.N. and Kaushik, B.K., 2020. Energy-efficient all-spin BNN using voltage-controlled spin-orbit torque device for digit recognition. IEEE Transactions on Electron Devices, 68(1), pp.385-392.

ANN
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Neuron

X1

X2

Xn

…
.

Input

y

Output

ANN

Feedforward Propagation
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Neuron

X1

X2

Xn

…
.

Independent 
input variable 1

Independent 
input variable 2

Independent 
input variable n

…
.

Input

y

Output

Standardization / Normalization[1]
[1] LeCun, Y.A., Bottou, L., Orr, G.B. and Müller, K.R., 2012. Efficient backprop. 
In Neural networks: Tricks of the trade (pp. 9-48). Springer, Berlin, Heidelberg.

ANN
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Neuron Activation Function How Do Neural Networks Work ANN

(https://www.someka.net/blog/how-to-normalize-data-in-excel/)

Standardization (Z-score Standardization): x!′ =
"!#$
%

Standardization / Normalization

Normalization: x!′ =
"!#&'((*)

&,- * #&!.(*)

Ø Normalization is used when the data 

doesn't have Gaussian distribution whereas 

Standardization is used on data having 

Gaussian distribution.

Ø Normalization scales in a range of [0,1] or 

[-1,1]. Standardization is not bounded by 

range.

Ø Normalization is highly affected by outliers. 

Standardization is slightly affected by 

outliers.

Ø Normalization is considered when the 

algorithms do not make assumptions about 

the data distribution. Standardization is 

used when algorithms make assumptions 

about the data distribution.
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Neuron

X1

X2

Xn

…
.

y

Output

Input

W1

W2

Wn

Synapses Weights
• Are how neural network learn
• Determine which inputs are important and which are not 

to a certain neuron.

ANN
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Neuron

X1

X2

Xn

…
.

y

Output

Input

W1

W2

Wn
!
"#$

%

𝑤"𝑥"

Step 1

ANN
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Neuron

X1

X2

Xn

…
.

y

Output

Input

W1

W2

Wn
!
"#$

%

𝑤"𝑥"

Step 1

∅ !
"#$

%

𝑤"𝑥"

Step 2

∅: activation function

ANN
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Neuron

X1

X2

Xn

…
.

y

Output

Input

W1

W2

Wn
!
"#$

%

𝑤"𝑥"

Step 1

∅ !
"#$

%

𝑤"𝑥"

Step 2

∅: activation function

Step 3
Pass the signal on

ANN
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X1

X2

Xn

"𝑦

SigmoidW1
 …
 W4n

W4n+1

W4n +2

W4n+3

W4n+4

Output

Input Hidden

…
.
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ü depends on a threshold 

value that decides whether 

a neuron should be 

activated or not.

• It cannot provide multi-value outputs—for example, it cannot be used for multi-class 

classification problems. 

• The gradient of the step function is zero, which causes a hindrance in the backpropagation 

process.

Limitation
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Neuron Activation Function How Do Neural Networks Work ANN

ü Takes any real value as input and outputs values in the range 

of 0 to 1.

ü One of the most widely used functions

ü Commonly used for models where the probability is an output

ü The function is differentiable and provides a smooth gradient, 

i.e., preventing jumps in output values. This is represented by 

an S-shape of the sigmoid activation function. 

Limitation

• For values greater than 3 or less than -3, the 

network ceases to learn and suffers from the 

Vanishing gradient problem.

• Sigmoid outputs are not zero-centered, which 

makes the training of the neural network more 

difficult and unstable.
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Neuron Activation Function How Do Neural Networks Work ANN

ü The output of the tanh activation function is Zero centered; 

ü Usually used in hidden layers of a neural network as its 

values lie between -1 to 1; therefore, the mean for the 

hidden layer comes out to be 0 or very close to it. It helps 

in centering the data and makes learning for the next layer 

much easier.

Limitation

• it also faces the problem of vanishing 

gradients similar to the sigmoid 

activation function. Plus, the gradient of 

the tanh function is much steeper as 

compared to the sigmoid function.
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Neuron Activation Function How Do Neural Networks Work ANN

üOnly a certain number of neurons are activated, making 

the ReLU function more computationally efficient than 

the sigmoid and tanh functions.

üReLU accelerates the convergence of gradient descent 

towards the global minimum of the loss function due to 

its linear, non-saturating property.

Limitation

• The dying ReLU problem could create 

dead neurons which never get activated.

• All the negative input values become 

zero, which decreases the model’s ability 

to fit or train from the data properly. 
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Neuron

X1

X2

Xn

…
.

y

Output

• Continues value
• Binary (yes / no)
• Categorical value: 

y1, y2, y3,…

Input

ANN
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X1

X2

X3

∅ '
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Output Value

Actual Value

"𝑦

𝑦

Cost Function 

𝑪 =
𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%

"𝑦
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X1

X2

X3

∅ '
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Output Value

Actual Value

"𝑦

𝑦

Cost Function 

𝑪 =
𝟏
𝟐
(𝒚 − 𝒚 𝟐

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%

"𝑦

Backpropagation

𝐶
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X1

X2

X3

∅ '
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Output Value

Actual Value

"𝑦

𝑦

Cost Function 

𝑪 =
𝟏
𝟐
(𝒚 − 𝒚 𝟐

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%

"𝑦

𝐶
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X1

X2

X3

∅ '
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Output Value

Actual Value

"𝑦

𝑦

Cost Function 

𝑪 =
𝟏
𝟐
(𝒚 − 𝒚 𝟐

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%

"𝑦

𝐶

Backpropagation
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X1

X2

X3

∅ '
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Output Value

Actual Value

"𝑦

𝑦

Cost Function 

𝑪 =
𝟏
𝟐
(𝒚 − 𝒚 𝟐

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%

"𝑦

𝐶
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Cost Function: 𝑪 = 	∑ 𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶

X1

X2

X3

∅ "
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%
2 11 8 77% 88%
3 8 8 80% 75%
4 6 12 70% 68%

𝑦"𝑦 𝑦"𝑦 𝑦"𝑦 𝑦"𝑦

Adjust W1, W2, W3
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ØGradient Descent

Cost Function 𝑪 = 𝟏
𝟐
(𝒚 − 𝒚 𝟐
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ØGradient Descent

Cost Function 𝑪 = 𝟏
𝟐
(𝒚 − 𝒚 𝟐

However,….
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Cost Function: 𝑪 = 	∑ 𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶

X1

X2

X3

∅ "
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%
2 11 8 77% 88%
3 8 8 80% 75%
4 6 12 70% 68%

𝑦"𝑦 𝑦"𝑦 𝑦"𝑦 𝑦"𝑦

Adjust W1, W2, W3

ØNormal Gradient Descent
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Cost Function: 𝑪 = 	∑ 𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶

X1

X2

X3

∅ "
!"#

$

𝑤!𝑥! !𝑦

W1

W2

W3

𝑦

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%
2 11 8 77% 88%
3 8 8 80% 75%
4 6 12 70% 68%

𝑦"𝑦 𝑦"𝑦 𝑦"𝑦 𝑦"𝑦

Adjust W1, W2, W3

ØStochastic Gradient Descent
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Cost Function: 𝑪 = 	∑ 𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶
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X2

X3
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𝑦
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Hours Quiz Exam

(Actual)
1 12 7 79% 90%
2 11 8 77% 88%
3 8 8 80% 75%
4 6 12 70% 68%

𝑦"𝑦 𝑦"𝑦 𝑦"𝑦 𝑦"𝑦

Adjust W1, W2, W3

ØStochastic Gradient Descent
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Cost Function: 𝑪 = 	∑ 𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶
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Adjust W1, W2, W3

ØStochastic Gradient Descent
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Cost Function: 𝑪 = 	∑ 𝟏
𝟐
(𝒚 − 𝒚 𝟐

𝐶

X1

X2

X3
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1 12 7 79% 90%
2 11 8 77% 88%
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𝑦"𝑦 𝑦"𝑦 𝑦"𝑦 𝑦"𝑦

Adjust W1, W2, W3

ØStochastic Gradient Descent
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Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%
2 11 8 77% 88%
3 8 8 80% 75%
4 6 12 70% 68%

Normal (Batch) 
Gradient 
Descent

Stochastic 
Gradient 
Descent

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 90%
2 11 8 77% 88%
3 8 8 80% 75%
4 6 12 70% 68%

Upd W’s
Upd W’s
Upd W’s
Upd W’s
Upd W’s

üRow-by-row running makes SGD has much 

higher fluctuation and thus more likely to find the 

global minimum

üIt’s a faster algorithm than GD

üSGD cannot ensure the same update of weights 

even if the initial weights are the same.

üEasy to flow to the local minimum

üIt has lower efficiency

üThe main advantage of GD is that it is a 

deterministic algorithm, i.e., each time you have the 

same initial weights, you will get the same process 

to update your weights.
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X1

X2

X3

!𝑦
Sigmoid

W1
 …
 W12

W13

W14

W15

W16

Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 1
2 11 8 77% 1
… … … … …
80 6 12 70% 0
81 11 8 69% 0
82 8 10 85% 1
… … … … …

100 6 6 66% 0

Training

Testing

Exam
(Actual) Log Corrected 

probability

Predicted 
probability

(pi)
1 -0.04 0.92 0.92
1 -0.36 0.44 0.44
0 -0.40 0.40 0.60
… … … …
0 -0.11 0.78 0.22

1: Pass       0: Not Pass

𝐿𝑜𝑠𝑠	 = 	−
1
80
	(−0.04 − 0.36 − 0.40 −⋯− 0.11)

Binary cross-
entropy loss 
function

Trained Model
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Row ID Study 
Hours

Sleep 
Hours Quiz Exam

(Actual)
1 12 7 79% 1
2 11 8 77% 1
… … … … …
80 6 12 70% 0
81 11 8 69% 0
82 8 10 85% 1
… … … … …

100 6 6 66% 0

Training

Testing

1: Pass       0: Not Pass

Trained Model

Row 
ID

Exam
(Actual)

Predicted Probability 
for Pass

81 0 0.48
82 1 0.88
… … …

100 0 0.53

Predictive Performance Evaluation

Ø Confusion matrix

Determine a probability threshold (typically 0.5)

True Negative 
(TN)

Predicted
Not Pass Pass

False Positive 
(FP)

True Positive 
(TP)

N
ot

 P
as

s
Pa

ss False Negative 
(FN)

Ac
tu

al

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2 E 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 E 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(harmonic mean of precision and recall, 
range from 0 to 1 where 1 is the best) 
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Neuron Activation Function How Do Neural Networks Work ANN

Row 
ID

Exam
(Actual)

Predicted Probability 
for Pass

81 0 0.48
82 1 0.88
83 1 0.49
84 0 0.34
85 1 0.43
86 0 0.2
87 0 0.1
88 1 0.65
89 1 0.9
90 1 0.9

Predictive Performance Evaluation

Ø Confusion matrix

Determine a probability threshold (typically 0.5)

True Negative 
(TN)

Predicted
Not Pass Pass

False Positive 
(FP)

True Positive 
(TP)

N
ot

 P
as

s
Pa

ss False Negative 
(FN)

Ac
tu

al

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2 E 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 E 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(harmonic mean of precision and recall, 
range from 0 to 1 where 1 is the best) 
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Row 
ID

Exam
(Actual)

Predicted Probability 
for Pass

81 0 0.48
82 1 0.88
83 1 0.39
84 0 0.15
85 1 0.43
86 0 0.21
87 0 0.71
88 1 0.65
89 1 0.9
90 1 0.9

Predictive Performance Evaluation

Ø Confusion matrix

Determine a probability threshold (typically 0.5)

True Negative 
(TN)

Predicted
Not Pass Pass

False Positive 
(FP)

True Positive 
(TP)

N
ot

 P
as

s
Pa

ss False Negative 
(FN)

Ac
tu

al

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2 E 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 E 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(harmonic mean of precision and recall, 
range from 0 to 1 where 1 is the best) 

TN=3

Predicted
Not Pass Pass

FP=1

TP=4

N
ot

 P
as

s
Pa

ss FN=2Ac
tu

al

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
4
5 𝑇𝑃𝑅 = 𝑅𝑒𝑐𝑎𝑙𝑙 =

2
3

𝐹𝑃𝑅 =
1
4 𝐹1	𝑆𝑐𝑜𝑟𝑒 =

8
11
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Ø Confusion matrix

Determine a probability threshold (typically 0.5)

True Negative 
(TN)

Predicted
Not Pass Pass

False Positive 
(FP)

True Positive 
(TP)

N
ot

 P
as

s
Pa

ss False Negative 
(FN)

Ac
tu

al

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2 E 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 E 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(harmonic mean of precision and recall, 
range from 0 to 1 where 1 is the best) 

Ø Aggregated measurement

Receiver 
Operating 

Characteristic 
(ROC) curve

Precision-
Recall (PR) 

curve

[0.5, 1]

Predictive Performance Evaluation

[0,1 − %&'()
%&'()'%)'(&

]
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Ø Aggregated measurement

Receiver 
Operating 

Characteristic 
(ROC) curve

Precision-
Recall (PR) 

curve

[0.5, 1]

[0,1 − %&'()
%&'()'%)'(&

]

Predictive Performance Evaluation
Row ID Exam

(Actual)

Predicted 
Probability for 

Pass
0 0.2 0.4 0.6 0.8 1

81 0 0.48 1 1 1 0 0 0

82 1 0.88 1 1 1 1 1 0
83 1 0.39 1 1 0 0 0 0
84 0 0.15 1 0 0 0 0 0
85 1 0.43 1 1 1 0 0 0
86 0 0.21 1 1 0 0 0 0
87 0 0.71 1 1 1 1 0 0
88 1 0.65 1 1 1 1 0 0
89 1 0.9 1 1 1 1 1 0
90 1 0.9 1 1 1 1 1 0

TPR 1 1 0.83 0.67 0.5 0
FPR 1 0.75 0.5 0.25 0 0

Precision 0.6 0.67 0.71 0.8 1 -
Recall 1 1 0.83 0.67 0.5 0
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§Section 1. Some Basic Concepts of Neural Network
• Neuron
• Activation function
• How do neural networks work
• Artificial Neural Network (ANN) example

Outline

§Section 2. Graph Neural Network (GNN)
• Graph data and graph tasks
• How do GNNs work
• GraphSAGE

§Section 3. Application: Modeling Shared Mobility System Using GNN 
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How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

Ø Image as graph

Ø Text as graph

Graphs are all around us
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Ø Graph-valued data in the real world
How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

Unlike image and 
text data, complex 
networks do not 
have identical 
adjacency matrices

3d representation of the 
Caffeine molecule

Adjacency matrix of the bonds in the molecule Graph representation of the molecule

Image of karate tournament Adjacency matrix of the interaction 
between people in a karate club

Graph representation of these interactions
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Ø Graph-based tasks

How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

Graph-level classification

Input: graphs

Output: labels for each graph 
(e.g., graph with/without two rings)

Node-level clustering

Input: graph with unlabeled nodes

Output: graph with labeled nodes

Edge-level Prediction

Positive link
Negative link

Positive link
Negative link

Input: period one graph

Output: period two graph
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Ø The challenges of graph-based deep learning

How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

• Different types of graph information need different approaches to represent and be 
compatible with neural networks

• The representation of a graph’s connectivity is especially complicated
• Drawbacks of adjacency matrix representation:
ü Space-inefficient (𝑂(𝑛#$%&'( ))
ü One graph connection can be encoded by 

different adjacency matrices

• Using adjacency list for the representation 
of graph connection is more memory- 
efficient (𝑂(𝑛&%)&'))

Adjacency List
A B
B C
C D
A D
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How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

Ø Case 1: Edge to node embedding

𝐸*

𝐸+ 𝐸,
𝐸-

𝐸.

𝐸/

𝐸0

𝐸! = ⋮ " 𝜌*#→,$

𝑉% = 𝐸% + 𝐸& + 𝐸' + 𝐸( = ⋮ "

𝑉*

𝐸*

𝐸+ 𝐸,
𝐸-

𝐸.

𝐸/

𝐸0

𝑉*

𝑉+

𝑉,

𝑉-

𝑉.
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How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

𝑉) = ⋮ " 𝜌,*→,$

𝑉′% =
1
5
𝑉% + 𝑉+ + 𝑉& + 𝑉, + 𝑉' = ⋮ "

𝑉*

𝑉+

𝑉,

𝑉-

𝑉.

𝑉′*

𝑉′+

𝑉′,

𝑉′-

𝑉′.

X1

X2

Xn

!𝑦
Sigmoid

Weights…
.

... Weights

Class 1

Class 2

Ø Case 2: Neighborhood aggregation to node embedding

𝑉*

𝑉+

𝑉,

𝑉-

𝑉.
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How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

𝑋! =
.
.
.

𝑋" =
.
.
.

𝑋# =
.
.
.

𝑋$ =
.
.
.

𝑋% =
.
.
.

𝑋& =
.
.
.

Target node

Layer-0	ℎ%& = 𝑥%

Layer-1	ℎ%#

Layer-2	𝑧' = ℎ%(
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How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

ℎ!" = 𝜎 𝑊" ' 𝐴𝐺𝐺 ℎ#"$%, ∀𝑢 ∈ 𝑁 𝑣 , 𝐵"ℎ!"$%

Aggregation of neighbor’s previous layer embeddings Previous layer embedding of target node

Activation function 
(e.g., ReLU) Ø One type of AGG:

𝑋! =
.
.
.

𝑋" =
.
.
.

𝑋# =
.
.
.

𝑋$ =
.
.
.

𝑋% =
.
.
.

𝑋& =
.
.
.

Target node

Layer-0	ℎ%& = 𝑥%

Layer-1	ℎ%#

Layer-2	𝑧' = ℎ%(

Trainable weight matrices (what we learn)
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How Do GNNs Work GraphSAGE AlgorithmGraph Data and Graph Tasks

ℎ!" = 𝜎 𝑊" ' 𝐴𝐺𝐺 ℎ#"$%, ∀𝑢 ∈ 𝑁 𝑣 , 𝐵"ℎ!"$%

Trainable weight matrices (what we learn)

Aggregation of neighbor’s 
previous layer embeddings

Previous layer embedding 
of target node

Activation function 
(e.g., ReLU)

Inductive capability:
Once obtain the trained weight matrices, 
they are shared for all nodes

Ø Example: train on protein interaction graph from model organism A and generate embeddings on 
newly collected data about organism B, which shares similar features with A.

Obtain the trained weight 
matrices: 𝑊-, 𝐵-

Train on model graph A
Generate embeddings 
for new graph B
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§Section 1. Some Basic Concepts of Neural Network
• Neuron
• Activation function
• How do neural networks work
• Artificial Neural Network (ANN) example

Outline

§Section 2. Graph Neural Network (GNN)
• Graph data and graph tasks
• How do GNNs work
• GraphSAGE

§Section 3. Application: Modeling Shared Mobility System Using GNN 
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Background and Motivation

Station 1

Station 2

Station 4

Station 3

Shared Mobility System 
Predictive Model 

• Help test system design 
approach

• Forecast the usage of 
system capacity

• Guide decision-making on 
system operation

Factors Influencing 
Travel Behavior

• Time factors, e.g., peak 
hours, holidays

• Climate effects
• Spatial dependencies 

among serving stations
• Surrounding Point of 

Interests (POIs)

Limitation of Existing 
Study

Station 1

Station 2

Station 4

Station 3

In: 3, Out: 8
In: 5, Out: 6

In: 11, Out: 8

In: 7, Out: 4

• Only predict station-level 
rental and return demands 
but do not tell where the 
return comes from and the 
rental goes to.
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Background and Motivation

Shared Mobility System Shared Mobility Network and 
Significant Local Service Systems

• The Complex network is a powerful tool to represent shared mobility systems and user behaviors.
• Significant local service systems are identified based on network motif theory.
• The local service systems show typical characteristics such as obvious hierarchical average geographical distance 

distribution which is correlated to the local system structures.

Understanding Generated From Previous Works[1]

Hierarchical Average Distance 
Distributions of Different Local 

Service Systems

[1] Xiao, Y., and Sha, Z., 2020. “Towards engineering com- plex socio-technical systems using network motifs: A case study on bike-sharing systems”. In International Design Engineering Technical Conferences and Computers and In- formation in Engineering Conference, Vol. 
84003, American Society of Mechanical Engineers, p. V11AT11A045. 
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Research Question and Objective

Whether and to what extent does the local network information (e.g., structure 

and node features) play a role in the formation of a shared mobility network?

Research Questions

Develop a network-based approach to predict travel demand between stations 

in shared mobility systems based on local network information.

Research Objective
The existences of trips occurring from one 
station to another in a period of time.

𝑉'

𝑉(

𝑉)

𝑉*

𝑉+

E.g., the local network information of V2 
means the information of V1 and V5
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Research Approach

Period One: Month 𝑖 in year 𝑌;  Period Two: Month 𝑖 in year 𝑌 + 1,  (𝑖=1,…,12)   

Predicted Result Evaluation

VS
Real Link 
List For 

Period Two

• Confusion matrix
• F1 – Score
• Receiver operating characteristic (ROC) 

curve and area under curve (AUC)
• Precision-recall (PR) curve and area under 

curve (AUC)

Node 
Features

Station 1

Station 2

Station 4

Station 3

Adjacency 
List

Period One Shared Mobility Network

Graph Neural 
Network (GNN) 
Model For Link 

Prediction

Trained Neural 
Network Model

Node 
Features

Adjacency List 
Approximate Approach

Approximate 
Adjacency 

List

Period Two Approximate  Shared Mobility Network

Station 1

Station 2

Station 4
Station 5

Station 6

Predicted 
Link List For 
Period Two



T E X A S  E N G I N E E R I N G

Research Approach

Period One: Month 𝑖 in year 𝑌;  Period Two: Month 𝑖 in year 𝑌 + 1,  (𝑖=1,…,12)   

Predicted Result Evaluation

VS
Real Link 
List For 

Period Two

• Confusion matrix
• F1 – Score
• Receiver operating characteristic (ROC) 

curve and area under curve (AUC)
• Precision-recall (PR) curve and area under 

curve (AUC)

Node 
Features

Station 1

Station 2

Station 4

Station 3

Adjacency 
List

Period One Shared Mobility Network

Graph Neural 
Network (GNN) 
Model For Link 

Prediction

Trained Neural 
Network Model

Node 
Features

Adjacency List 
Approximate Approach

Approximate 
Adjacency 

List

Period Two Approximate  Shared Mobility Network

Station 1

Station 2

Station 4
Station 5

Station 6

Predicted 
Link List For 
Period Two
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Node Features

Latitude Longitude Dock 
#

Financial 
#

Education 
#

Recreational & 
Tourism # Residential # Sustenance 

# Healthcare # Transportation #

Station attributes determined by system designers

[2] Liu, J., Sun, L., Li, Q., Ming, J., Liu, Y., and Xiong, H., 2017. “Functional zone based hierarchical demand pre- diction for bike system expansion”. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 957–966. 
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Node Features

Latitude Longitude Dock 
#

Financial 
#

Education 
#

Recreational & 
Tourism # Residential # Sustenance 

# Healthcare # Transportation #

Station attributes determined by system designers

Station surrounding point of interests (POIs)

Station 1

Station 2

Station 3

Education 1

Financial 2

Transportation 1

Transportation 2

Residential 1

Sustenance 1

Transportation 3
Sustenance 2

R

Healthcare 1

Recreation
al&Tourism 
1

Financial 1

Transportation 4

Healthcare 2
Residential 2

Sustenance 3

Sustenance 4

[2] Liu, J., Sun, L., Li, Q., Ming, J., Liu, Y., and Xiong, H., 2017. “Functional zone based hierarchical demand pre- diction for bike system expansion”. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 957–966. 
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Station 1

Station 2

Station 3

Education 1

Financial 2

Transportation 1

Transportation 2

Residential 1

Sustenance 1

Transportation 3
Sustenance 2

R

Healthcare 1

Recreation
al&Tourism 
1

Financial 1

Transportation 4

Healthcare 2
Residential 2

Sustenance 3

Sustenance 4

Node Features

Latitude Longitude Dock 
#

Financial 
#

Education 
#

Recreational & 
Tourism # Residential # Sustenance 

# Healthcare # Transportation #

Station attributes determined by system designers

Station surrounding point of interests (POIs)

0

0.5

1

1.5

2

2.5

Station 1 Station 2 Station 3

Co
un

t

Financial
Education
Recreational&Tourism
Residential
Sustenance
Healthcare
Transportation

R: referring to existing work[2], a person would prefer to ride when the 
origin-to-destination distance is 1.5 ~ 2.7 miles. Therefore, 1.5 miles is 
the longest distance that people are willing to commute by walking.  

[2] Liu, J., Sun, L., Li, Q., Ming, J., Liu, Y., and Xiong, H., 2017. “Functional zone based hierarchical demand pre- diction for bike system expansion”. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 957–966. 
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Research Approach

Period One: Month 𝑖 in year 𝑌;  Period Two: Month 𝑖 in year 𝑌 + 1,  (𝑖=1,…,12)   

Predicted Result Evaluation

VS
Real Link 
List For 

Period Two

• Confusion matrix
• F1 – Score
• Receiver operating characteristic (ROC) 

curve and area under curve (AUC)
• Precision-recall (PR) curve and area under 

curve (AUC)

Node 
Features

Station 1

Station 2

Station 4

Station 3

Adjacency 
List

Period One Shared Mobility Network

Graph Neural 
Network (GNN) 
Model For Link 

Prediction

Trained Neural 
Network Model

Node 
Features

Adjacency List 
Approximate Approach

Approximate 
Adjacency 

List

Period Two Approximate  Shared Mobility Network

Station 1

Station 2

Station 4
Station 5

Station 6

Predicted 
Link List For 
Period Two
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GNN Model For Link Prediction

Start node 
embedding 
(Dimension: 

M)

End node 
embedding 
(Dimension: 

M)

Hop 1

Hop 2

Sampled in- and out- 
neighborhoods of a 

central node

Aggregate neighborhood 
information to get node 

embedding

Node Embedding By GraphSAGE[3] 
: Node embedding

: Aggregator

: In neighbor

: Out neighbor

Supervised learning

Hidden layer
(2M 

neurons)
Relu

Output layer
(One neuron)

Sigmoid

Loss function: binary cross-entropy

Input layer
(2M 

neurons)

Binary Link Classification

… …

Co
nc

at
en

at
e

…

……

……

Link 
embedding

(2M)

…
…

: Central node

: Normalized node feature

[3] Hamilton, W. L., Ying, R., and Leskovec, J., 2017. “Inductive representation learning on large graphs”. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035. 
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Research Approach

Period One: Month 𝑖 in year 𝑌;  Period Two: Month 𝑖 in year 𝑌 + 1,  (𝑖=1,…,12)   

Predicted Result Evaluation

VS
Real Link 
List For 

Period Two

• Confusion matrix
• F1 – Score
• Receiver operating characteristic (ROC) 

curve and area under curve (AUC)
• Precision-recall (PR) curve and area under 

curve (AUC)

Node 
Features

Station 1

Station 2

Station 4

Station 3

Adjacency 
List

Period One Shared Mobility Network

Graph Neural 
Network (GNN) 
Model For Link 

Prediction

Trained Neural 
Network Model

Node 
Features

Adjacency List 
Approximate Approach

Approximate 
Adjacency 

List

Period Two Approximate  Shared Mobility Network

Station 1

Station 2

Station 4
Station 5

Station 6

Predicted 
Link List For 
Period Two
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Adjacency List Approximate Approach
ØApproach 1: Modified Period One Mobility Network

Station 1

Station 2

Station 4

Station 3
Station 1

Station 2

Station 4
Station 5

Station 6
Station 1

Station 2

Station 4Station 5

Station 6

Period One Mobility Network Period Two Mobility Stations Modified Period One Mobility Network

=[ ]
ØApproach 2: ANN-Based Approximate Period Two 

Mobility Network 

Artificial Neural 
Network (ANN) 
Model For Link 

Prediction Station 1

Station 2

Station 4Station 5

Station 6

Approximate Period Two Mobility Network

ØApproach 3 (Ground Truth): Real 
Period Two Mobility Network

Station 1

Station 2

Station 4
Station 5

Station 6

Real Period Two Mobility Network
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Baseline

Period One: Month 𝑖 in year 𝑌;  Period Two: Month 𝑖 in year 𝑌 + 1,  (𝑖=1,…,12)   

Predicted Result Evaluation

VS
Real Link 
List For 

Period Two

• Confusion matrix
• F1 – Score
• Receiver operating characteristic (ROC) 

curve and area under curve (AUC)
• Precision-recall (PR) curve and area under 

curve (AUC)

Node 
Features

Station 1

Station 2

Station 4

Station 3

Period One Shared Mobility Network

Artificial Neural 
Network (ANN) 
Model For Link 

Prediction

Trained Neural 
Network Model

Node 
Features

Period Two Approximate  Shared Mobility Network

Station 1

Station 2

Station 4
Station 5

Station 6

Predicted 
Link List For 
Period Two
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Baseline: ANN Link Prediction Model

Supervised learning

Hidden layer
(2N neurons)

Relu

Output layer
(One neuron)

Sigmoid

Loss function: binary 
cross-entropy

Input layer
(2N neurons)

Binary Link Classification

… …

…
…

Start node 
features 

(N)

End node 
features 

(N)

Concatenate

…

……

……

Link features
(2N)

…
…M

ax
-M

in
 N

or
m

al
iza

tio
n
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Case Study

• System Name: Divvy Bike
• Location: Chicago
• Date of Operation Began: 

June 2013
May 2016 Binary Directed Trip Network

(# of Nodes: 535, # of Edges: 21221)

35 268

77

287
91

# of Connections

1

320

Period One Shared Mobility 
Network

Period Two Shared Mobility 
Network

?

May 2017 Binary Directed Trip Network
(# of Nodes: 582, # of Edges: ?)
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Data Preparation and Experiment Settings

• May 2016 trip network (node features, adjacency matrix)
• Total # of positive links in May 2016 + an equal # of sampled negative links
      (70% for training, 30% for validation)

ØData preparation for GNN-based link prediction 

• May 2017 approximate trip network (node features, approximate adjacency 
matrix)

• All of the positive and negative links in May 2017

Training Input

Predicting Input

Evaluation Input

• May 2016 node features
• Total # of positive links in May 2016 + an equal # of sampled negative links 

(70% for training, 30% for validation)

ØData preparation for ANN-based link prediction 

• May 2017 node features

• All of the positive and negative links in May 2017

Training Input

Predicting Input

Evaluation Input

Setting Items Model Applied Value

Neighbor search 
depth

GraphSAGE

2

# of sampled in- and 
out-neighbors in two 
hops

10

Node embedding 
size 30

Input and hidden 
layer size for 
GraphSAGE

60

Input and hidden 
layer size for ANN ANN 20

Minibatch size

GraphSAGE 
&

ANN

192

Epoch 500

Learning rate 4e-4

Dropout 0

ØExperiment Parameter Settings
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Result: GNN (GraphSAGE) VS ANN
Confusion Matrix

(Probability threshold = 0.5)
ANN Link Prediction GNN (GraphSAGE) Link Prediction

0 1 0 1

Actual Class
0 278859

(TNR 87.61%)
39426

(FPR 12.39%)
278930

(TNR 87.64%)
39355

(FPR 12.36%)

1 1262
(FNR 6.36%)

18595
(TPR 93.64%)

1475
(FNR 7.43%)

18382
(TPR 92.57%)

• When taking 0.5 as the 
probability threshold, GNN 
and ANN share a similar 
predictive power in both 
positive and negative 
categories. 

• Similar F1-Score and ROC 
AUC (difference less than 
0.005) further indicate both 
models’ identical predictive 
power in both positive and 
negative categories.

• Higher PR AUC of 
GraphSAGE implies that 
neighborhood information can 
enhance the predictive power 
of the minority class (positive 
links) at an aggregated level.

Findings

F1-Score 0.478 0.474
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Approximate Adjacency Lists By ANN

Optimal threshold for ROC: a balance 
between true positive and false positive rates. 

Optimal threshold for ROC: a balance 
between precision and recall. 

𝐺_𝑀𝑒𝑎𝑛 = 𝑇𝑃𝑅 ∗ (1 − 𝐹𝑃𝑅)

𝐹1	𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Result: GNN (GraphSAGE) With Different Approximate 
Adjacency Lists

Confusion Matrix
(Probability threshold = 0.5)

Model 1: ANN-Based Approximate 
Approach (With Optimal Threshold for ROC)

Model 2: ANN-Based Approximate 
Approach 

(With Optimal Threshold for PR)
0 1 0 1

Actual Class
0 262343

(TNR 82.42%)
55942

(FPR 17.58%)
282863

(TNR 88.87%)
35422

(FPR 11.13%)

1 1475
(FNR 5.52%)

18382
(TPR 94.48%)

2474
(FNR 12.46%)

17383
(TPR 87.54%)

F1-Score 0.397 0.478

Confusion Matrix
(Probability threshold = 0.5)

Model 3: Modified May 2016 Trip Network Model 4: Real May 2017 Trip Network
(Ground Truth)

0 1 0 1

Actual Class
0 278930

(TNR 87.64%)
39355

(FPR 12.36%)
278203

(TNR 87.41%)
40082

(FPR 12.59%)

1 1475
(FNR 7.43%)

18382
(TPR 92.57%)

1042
(FNR 5.25%)

18815
(TPR 94.75%)

F1-Score 0.474 0.478
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Result: GNN (GraphSAGE) With Different Approximate 
Adjacency Lists

Model 3 shows higher ROC AUC and PR AUC than Model 1 and Model 2 indicating using the modified 
Period One network to approximate the neighbor information in the Period Two network is adequate for 
link prediction.

Findings
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Summary

• We proposed a complex network-based approach based on GNN to predict travel demand 

between stations in shared mobility systems.

• By comparing to ANN, we revealed the importance of network neighboring information in 

travel demand prediction of shared mobility system.

• We tested different adjacency list approximate approaches and figured out taking previous 

year’s network structure to approximate next year’s node embedding can generate the 

best link prediction results for shared mobility system.
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Referred Resources
§Section 1: 

• Neural Network: https://www.slideshare.net/KirillEremenko/deep-learning-az-artificial-neural-networks-ann-module-1

• Activation Function: https://www.v7labs.com/blog/neural-networks-activation-functions

§Section 2: 

• A Gentle Introduction to Graph Neural Networks

 https://distill.pub/2021/gnn-intro/

• Stanford CS224W: Machine Learning with Graphs

http://snap.stanford.edu/class/cs224w-2019/

§Section 3: Travel Links Prediction In Shared Mobility Networks Using Graph Neural Network Models

https://sidilab.files.wordpress.com/2022/05/bss_prediction_idetc_2022_final.pdf

https://distill.pub/2021/gnn-intro/
http://snap.stanford.edu/class/cs224w-2019/
https://sidilab.files.wordpress.com/2022/05/bss_prediction_idetc_2022_final.pdf
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